下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
缺陷检测是工业视觉领域非常重要的应用之一。几乎所有的工业产品在流入市场之前都会有缺陷检测的环节,目的是确保产品是合格的。对产品进行缺陷检测时,分为人工目视检测和工业视觉检测。利用工业视觉做缺陷检测时,常用的解决思路如下:Ⅰ、传统图像算法用传统图像算法做缺陷检测时,方法有二:①特征工程特征工程是缺陷检测中最常用的方法。特征工程是通过传统图像算法分析图像灰度值、方差、均值、颜色、型状、轮廓、面积等特征去检测缺陷,方法非常灵活,开发速度也快。在应用层面,一般会将缺陷特征的相关参数开放到软件端,供使用者灵活调整。②模板匹配模板匹配是通过预设一些图像模板,将图像模板与待测图像进行比较,以达到识别缺陷的目的。这种算法应用有限,举个例子,做某品牌饮料瓶标签的缺陷检测,会利用方法①特征工程的技术识别部分缺陷类型,但也会利用模板匹配,通过预设一些标签图像模板去匹配待测图像,以判断标签是否有缺陷。Ⅱ、CV算法计算机视觉算法即CV(ComputerVision)算法,是指让计算机理解图像的一种技术,属于AI(ArtificialIntelligence)算法的分支之一。在工业视觉领域,处理对象是图像,故提到AI算法便是CV算法。也许AI算法听起来高级,所以在工业视觉领域,大家一般多说AI算法,不怎么提CV算法。图像分类、目标检测、语义分割、实例分割、目标跟踪、OCR、人脸识别、图像生成、异常检测、等都属于CV算法。其中,在工业视觉缺陷检测领域应用较多的CV算法为图像分类、目标检测、实例分割。①图像分类图像分类,顾名思义,是对图像进行分类并确定图像类别的一种算法。根据分类任务不同,图像分类又分为单标签分类和多标签分类。常用的分类网络有ResNet、MobileNet、EfficientNet等。在工业视觉领域,理论上讲,可以利用图像分类算法对整张图像直接分类,以确定其缺陷类别。由于工业相机拍摄的视野问题,会使整张图像除了目标区域外,还会包含很多无关的背景,这些无关的背景会干扰图像分类模型的训练,导致图像分类算法的准确率低,因此实际项目中,极少利用图像分类算法直接对整张图进行分类。②目标检测目标检测算法是在图像中对所有感兴趣的目标,用检测框定位目标的位置和类别,如下图1所示。这种方法简单粗暴,即通过标注大量缺陷数据集,训练一个具有缺陷检测能力的目标检测模型。
图1目标检测示例最经典目标检测算法首推YOLO系列,准确率高且推理速度快,属于非常优异的算法。在实际应用中,需要对图像进行尺寸的缩放,使图像大小符合目标检测模型所要求的尺寸。如果原图很大,缺陷很小,使缺陷在原图中占比很小,比如点状的微小缺陷,可能会使图像在预处理缩放过程中,将缺陷丢失。因此,如果有此类问题的风险,一般会将原图进行裁剪为多份,比如10000*5000分辨率的图像,拆分为10张2000*2500分辨率的图像,然后对这10张图像单独进行检测,最后将检测结果汇总。此类方法也有弊端,那就是数据集,成也数据集,败也数据集。因为目标检测算法属于有监督学习,依赖大量的数据集,如果数据集不够,会导致算法准确率低。实际项目中,往往需要持续收集数据,反复多次迭代模型,才能达到理想效果。③实例分割实例分割是目标检测的升华版本,即在目标检测的基础上用更精细的mask进行定位,而非检测框,如图2所示。图2
实例分割示例YOLO算法的原创作者JosephRedmon在他YOLOv3论文的最后写了这样一句话:Boxesarestupidanywaythough,I’mprobablyatruebelieverinmasksexceptIcan’tgetYOLOtolearnthem。由此可见,JosephRedmon是认可mask而非box。将实例分割算法应用到缺陷检测上,可以获得比目标检测算法更加精准的缺陷定位,这是有利于缺陷检测的。另一方面,当不同的缺陷离得很近,并且出现交叉或者包含的情况,目标检测算法很难获得较好的类别区分,但是实例分割算法并没有这个困境。若用实例分割算法在尺寸很大的图像上进行缺陷检测时,处理方法与目标检测算法一致,也是将图像拆分。实例分割算法和目标检测算法一样,都属于有监督学习,需
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《急腹症诊治原则》课件
- 酸碱盐复习课件浙教版
- 《手机视频转换》课件
- 单位管理制度展示大全【人员管理】十篇
- 车钩缓冲器拆装器行业深度研究报告
- 单位管理制度展示汇编【职工管理篇】十篇
- 单位管理制度收录大全【人力资源管理篇】
- 单位管理制度品读选集人事管理十篇
- 2025医疗医药合同范本
- 输电线路设计-应力弧垂计算模版课件
- 机动车查验员技能理论考试题库大全-上(单选题部分)
- 监理人员安全生产培训
- 2024-2030年中国电力检修行业运行状况及投资前景趋势分析报告
- 河北省百师联盟2023-2024学年高二上学期期末大联考历史试题(解析版)
- 中央空调系统运行与管理考核试卷
- 核电工程排水隧道专项施工方案
- 2021年四川省凉山州九年级中考适应性考试理科综合(试卷)
- 骨科疼痛的评估及护理
- 民办学校招生教师培训
- 【MOOC】概率论与数理统计-南京邮电大学 中国大学慕课MOOC答案
- 2024年度软件开发分包合同技术要求与交底2篇
评论
0/150
提交评论