2025届陕西省三原县八年级数学第一学期期末考试试题含解析_第1页
2025届陕西省三原县八年级数学第一学期期末考试试题含解析_第2页
2025届陕西省三原县八年级数学第一学期期末考试试题含解析_第3页
2025届陕西省三原县八年级数学第一学期期末考试试题含解析_第4页
2025届陕西省三原县八年级数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届陕西省三原县八年级数学第一学期期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.多项式12ab3c-8a3b的公因式是()A.4ab2 B.-4abc C.-4ab2 D.4ab2.的立方根为()A. B. C. D.3.下列二次根式中与不是同类二次根式的是()A. B. C. D.4.等腰三角形的一个内角是,它的底角的大小为()A. B. C.或 D.或5.点P(﹣1,2)关于x轴对称点的坐标为()A.(1,﹣2)B.(﹣1,2)C.(1,2)D.(﹣1,﹣2)6.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和一角对应相等C.两角和其中一角的对边对应相等D.两角和它们的夹边对应相等7.下列银行图标中,是轴对称图形的是()A. B. C. D.8.等腰三角形的一外角是130°,则其底角是()A.65° B.50° C.80° D.50°或65°9.如图,是的中线,,分别是和延长线上的点,连接,,且..有下列说法:①;②和的面积相等;③;④.其中正确的有()A.1个 B.2个 C.3个 D.4个10.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°二、填空题(每小题3分,共24分)11.一副三角板如图放置,将三角板ADE绕点A逆时针旋转,使得三角板ADE的一边所在的直线与BC垂直,则的度数为______.12.如图7,已知P、Q是△ABC的边BC上的两点,且BP=QC=PQ=AP=AQ,则∠BAC=________13.定义一种符号#的运算法则为a#b=,则(1#2)#3 =_________.14.如果是一个完全平方式,则的值是_________.15.如图,已知方格纸中是4个相同的小正方形,则的度数为______.16.已知,则的值为__________.17.20192﹣2020×2018=_____.18.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为_____.三、解答题(共66分)19.(10分)一次函数的图象过M(6,﹣1),N(﹣4,9)两点.(1)求函数的表达式.(2)当y<1时,求自变量x的取值范围.20.(6分)如图,网格中的与为轴对称图形,且顶点都在格点上.(1)利用网格,作出与的对称轴;(2)结合图形,在对称轴上画出一点,使得最小;(3)如果每个小正方形的边长为1,请直接写出的面积.21.(6分)如图1,在平面直角坐标系中,O为坐标原点,点A(8,0).动点P从A出发以每秒2个单位长度的速度沿线段AO向终点O运动,同时动点Q从O出发以相同速度沿y轴正半轴运动,点P到达点O,两点同时停止运动,设运动时间为t.(1)当∠OPQ=45°时,请求出运动时间t;(2)如图2,以PQ为斜边在第一象限作等腰Rt△PQM,设M点坐标为(m,n),请探究m与n的数量关系并说明理由.22.(8分)如图,已知,,三点.(1)作关于轴的对称图形,写出点关于轴的对称点的坐标;(2)为轴上一点,请在图中找出使的周长最小时的点并直接写出此时点的坐标(保留作图痕迹).23.(8分)列方程解应用题:第19届亚洲运动会将于2022年9月10日至25日在杭州举行,杭州奥体博览城将成为杭州2022年亚运会的主场馆,某工厂承包了主场馆建设中某一零件的生产任务,需要在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.24.(8分)(1)请画出关于轴对称的(其中分别是的对应点,不写画法);(2)直接写出三点的坐标:.(3)计算△ABC的面积.25.(10分)如图1所示的图形,像我们常见的符号——箭号.我们不妨把这样图形叫做“箭头四角形”.探究:(1)观察“箭头四角形”,试探究与、、之间的关系,并说明理由;应用:(2)请你直接利用以上结论,解决以下两个问题:①如图2,把一块三角尺放置在上,使三角尺的两条直角边、恰好经过点、,若,则;②如图3,、的2等分线(即角平分线)、相交于点,若,,求的度数;拓展:(3)如图4,,分别是、的2020等分线(),它们的交点从上到下依次为、、、…、.已知,,则度.26.(10分)直线与轴相交于点,与轴相交于点.(1)求直线与坐标轴围成的面积;(2)在轴上一动点,使是等腰三角形;请直接写出所有点的坐标,并求出如图所示时点的坐标;(3)直线与直线相交于点,与轴相交于点;点是直线上一点,若的面积是的面积的两倍,求点的坐标.

参考答案一、选择题(每小题3分,共30分)1、D【分析】利用公因式的概念,进而提出即可.【详解】多项式12ab3c-8a3b的公因式是4ab,故选:D.【点睛】此题考查了公因式,熟练掌握提取公因式的方法是解本题的关键.2、A【分析】根据立方根的定义与性质即可得出结果【详解】解:∵∴的立方根是故选A【点睛】本题考查了立方根,关键是熟练掌握立方根的定义,要注意负数的立方根是负数.3、D【分析】根据同类二次根式的概念进行分析排除,即几个最简二次根式的被开方数相同,则它们是同类二次根式.【详解】A、与是同类二次根式,选项不符合题意;B、是同类二次根式,选项不符合题意;C、是同类二次根式,选项不符合题意;D、是不同类二次根式,选项符合题意;故选:D.【点睛】此题考查了同类二次根式的概念,关键是能够正确把二次根式化成最简二次根式.4、D【分析】由于不明确80°的角是等腰三角形的底角还是顶角,故应分80°的角是顶角和底角两种情况讨论.【详解】解:分两种情况:

①当80°的角为等腰三角形的顶角时,

底角=(180°-80°)÷2=50°;

②当80°的角为等腰三角形的底角时,其底角为80°.

故它的底角是50°或80°.

故选:D.【点睛】本题考查的是等腰三角形的性质及三角形内角和定理;解答此题时要注意80°的角是顶角和底角两种情况,不要漏解,分类讨论是正确解答本题的关键.5、D【解析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.【详解】点P(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2),故选D.【点睛】此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.6、B【解析】三角形全等的判定方法有SSS、SAS、ASA、AAS、HL,B中“一角”如果不是两边夹角则不能判定全等,故选B7、D【分析】根据轴对称图形的概念对各选项分析即可.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.8、D【分析】等腰三角形的一外角是130°,则可分两种情况讨论,①是底角的邻补角为130°,②是顶角的邻补角为130°,再计算底角即可.【详解】解:如图所示,△ABC是等腰三角形,AC=AB,∠CAD与∠ACE为△ABC的两个外角,①若∠CAD=130°,则∠CAD=∠ACB+∠ABC又∵∠ACB=∠ABC,∴∠ACB=∠ABC=65°,②若∠ACE=130°,则∠ACB=180°-130°=50°,所以底角为50°或65°,故答案为:D.【点睛】本题考查了等腰三角形分类讨论的问题,解题的关键是明确等腰三角形的一外角是130°,可分两种情况讨论.9、C【分析】先利用AAS证明△BDF≌△CDE,则即可判断①④正确;由于AD是△ABC的中线,由于等底同高,那么两个三角形的面积相等,可判断②正确;不能判断,则③错误;即可得到答案.【详解】解:∵,,∴∠F=∠CED=90°,∵是的中线,∴BD=CD,∵∠BDF=∠CDE,∴△BDF≌△CDE(AAS),故④正确;∴BF=CE,故①正确;∵BD=CD,∴和的面积相等;故②正确;不能证明,故③错误;∴正确的结论有3个,故选:C.【点睛】本题考查了全等三角形判定和性质,以及三角形中线的性质,解题的关键是证明△BDF≌△CDE.10、C【分析】根据CE是△ABC的外角∠ACD的平分线,∠ACE=60°,得出∠ACD=120°;再根据三角形的外角等于与它不相邻的两个内角和即可求解.【详解】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°∴∠ACD=2∠ACE=120°∵∠ACD=∠B+∠A∴∠A=∠ACD-∠B=120°-35°=85°故选:C.【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.二、填空题(每小题3分,共24分)11、15°或60°.【分析】分情况讨论:①DE⊥BC,②AD⊥BC,然后分别计算的度数即可解答.【详解】解:①如下图,当DE⊥BC时,如下图,∠CFD=60°,旋转角为:=∠CAD=60°-45°=15°;(2)当AD⊥BC时,如下图,旋转角为:=∠CAD=90°-30°=60°;【点睛】本题考查了垂直的定义和旋转的性质,熟练掌握并准确分析是解题的关键.12、120°【解析】识记三角形中的角边转换因为PQ=AP=AQ△APQ为等边三角形∠APQ=60°它互补角∠APB=120°BP="AP"△APB为等腰三角形∠PAB=30°同理∠CAQ=30°所以∠BAC=∠CAQ+∠PAB+∠PAQ=30°+30°+60°=120°13、【分析】根据新定义先运算1#2,再运算(1#2)#3即可.【详解】解:∵a#b=,∴(1#2)#3=#3=#3==.故答案为:.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.也考查了阅读理解能力.14、1或-1【分析】首末两项是2x和3这两个数的平方,那么中间一项为加上或减去2x和3积的2倍.【详解】解:∵是一个完全平方式,

∴此式是2x与3和的平方,即可得出-a的值,

∴(2x±3)2=4x2±1x+9,

∴-a=±1,

∴a=±1.

故答案为:1或-1.【点睛】此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,注意积的2倍的符号,避免漏解.15、90º【分析】首先证明三角形全等,根据全等三角形的性质可得对应角相等,再由余角的定义和等量代换可得∠1与∠2的和为90°.【详解】解:如图,根据方格纸的性质,在△ABD和△CBE中,∴△ABD≌△CBE(SAS),∴∠1=∠BAD,∵∠BAD+∠2=90°,∴=90°.故答案为:90°.【点睛】此题主要考查了全等图形,关键是掌握全等三角形的判定和性质.16、﹣1【分析】等式左边根据多项式的乘法法则计算,合并后对比两边系数即得答案.【详解】解:∵,,∴,∴m=﹣1.故答案为:﹣1.【点睛】本题考查了多项式乘多项式的运算法则,属于基础题型,熟练掌握多项式乘法的运算法则是解题关键.17、1【分析】先观察式子,将2020×2018变为(2019+1)×(2019-1),然后利用平方差公式计算即可.【详解】原式=20192﹣(2019+1)×(2019-1)=20192-(20192-1)=20192-20192+1=1故答案为:1.【点睛】本题考查了用平方差公式进行简便计算,熟悉公式特点是解题关键.18、【详解】解:如图,延长BG交CH于点E,∵AG=CH=8,BG=DH=6,AB=CD=10,∴AG2+BG2=AB2,CH2+DH2=DC2,△ABG≌△CDH,∴∠AGB=∠CHD=90°,∠1=∠5,∠2=∠6,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3,∠2=∠4,又∵AB=BC,∴△ABG≌△BCE,∴BE=AG=8,CE=BG=6,∴GE=BE-BG=8-6=2,HE=CH-CE=8-6=2,BE2+CE2=CD2,∴∠BEC=90°,∴HG=故答案为:三、解答题(共66分)19、(1)y=﹣x+2;(2)当y<1时,x>1.【分析】(1)采用待定系数法,求解即可;(2)根据函数的增减性,即可得解.【详解】(1)设一次函数的解析式为y=kx+b将M(6,﹣1),N(﹣1,9)代入得:解得∴函数的表达式y=﹣x+2.(2)∵k=﹣1<0∴一次函数y=﹣x+2的函数值随着x的增大而变小∵当y=1时,1=﹣x+2∴x=1∴当y<1时,x>1.【点睛】此题主要考查一次函数解析式以及自变量范围的求解,熟练掌握,即可解题.20、(1)见解析;(2)见解析;(1)1【分析】(1)对称轴应为两个三角形对应点连线的中线,故连接CF、DE,找到线段CF、DE的中点,再连接起来,即为所求直线;(2)连接CD与的交点即为点P的位置,因为点A与点D关于对称,根据两点之间,线段最短可得:,即P点即为所求;(1)ABC的面积可由一个矩形,减去三个直角三角形的面积所得.【详解】解:(1)对称轴应为两个三角形对应点连线的中线,故连接CF、DE,找到线段CF、DE的中点,再连接起来,即为所求直线.(2)如图所示,点P即为所求;连接CD与的交点即为点P的位置,因为点A与点D关于对称,根据两点之间,线段最短可得:,即P点即为所求;(1)ABC的面积可由一个矩形,减去三个直角三角形的面积所得,,故ABC的面积为1.【点睛】本题主要考察了对称轴的画法、求两点到第三点距离之和最短的情况、用割补法求三角形面积,解题的关键在于结合图形中对应点找出对称轴,并以此对称轴求得距离最短的情况.21、(1)当∠OPQ=45°时,运动时间为2秒;(2);理由见解析.【分析】(1)先由运动知,OP=8-2t,OQ=2t,根据等腰直角三角形的性质即可结论;

(2)先判断出△MCQ≌△MBP,得出CQ=BP,MC=MB,即可得出点M的纵横坐标相等,即可得出结论.【详解】(1)由题意可知,AP=2t,OQ=2t,∵A(8,0),OA=8,∴,∴OP=,在Rt△POQ中,∵∠POQ=90°,∠OPQ=45°,∴∠OQP=45°∴OP=OQ,∴,∴,∴当∠OPQ=45°时,运动时间为2秒;(2).理由:如图,过点M作MB⊥x轴于B,作MC⊥y轴于C,则MC=m,MB=n.∵MB⊥x轴,MC⊥y轴,∴∠MBP=∠MCQ=90°.∵∠POQ=90°,∴∠BMC=90°,∵△PMQ是等腰直角三角形,∴MQ=MP,∠PMQ=90°,∴∠CMQ=∠BMP,在△MCQ和△MBP中,,∴△MCQ≌△MBP(AAS),∴MC=MB,∴.【点睛】本题主要考查了坐标与图形,等腰直角三角形的性质,全等三角形的判定和性质,解本题关键是作出辅助线,构造全等三角形解决问题,22、(1)画图见解析;(2)画图见解析,点的坐标为【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;

(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【详解】(1)如图所示,即为所求;的坐标为,(2)如图所示,连接,交轴于点,点的坐标为.【点睛】本题考查了作图-轴对称变换,轴对称-最短路线问题,熟练掌握轴对称的性质是解题的关键.23、(1)原计划每天生产的零件2400个,规定的天数是10天;(2)原计划安排的工人人数480人.【分析】(1)根据题意可设原计划每天生产的零件x个,根据时间是一定的,列出方程求得原计划每天生产的零件个数,再根据工作时间=工作总量÷工作效率,即可求得规定的天数;

(2)设原计划安排的工人人数为y人,根据等量关系:恰好提前两天完成2400个零件的生产任务,列出方程求解即可.【详解】(1)解:设原计划每天生产的零件x个,由题意得,得:x=2400经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产的零件2400个,规定的天数是10天;(2)设原计划安排的工人人数为y人,依题意有[5×20×(1+20%)×+2400]×(10﹣2)=24000,解得y=480,经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数480人.【点睛】本题考查了分式方程的应用,一元一次方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论