下期湖南岳阳市城区2025届八年级数学第一学期期末综合测试模拟试题含解析_第1页
下期湖南岳阳市城区2025届八年级数学第一学期期末综合测试模拟试题含解析_第2页
下期湖南岳阳市城区2025届八年级数学第一学期期末综合测试模拟试题含解析_第3页
下期湖南岳阳市城区2025届八年级数学第一学期期末综合测试模拟试题含解析_第4页
下期湖南岳阳市城区2025届八年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

下期湖南岳阳市城区2025届八年级数学第一学期期末综合测试模拟试题综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,,,与相交于点.则图中的全等三角形共有()A.6对 B.2对 C.3对 D.4对2.如果分式方程的解是,则的值是()A.3 B.2 C.-2 D.-33.下列四组数据中,不能作为直角三角形的三边长的是()A.7,24,25 B.6,8,10 C.9,12,15 D.3,4,64.下列图形中具有稳定性的是()A.正方形 B.长方形 C.等腰三角形 D.平行四边形5.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是()A. B. C. D.6.下列各式运算正确的是()A. B. C. D.7.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5° C.20° D.22.5°8.如图,△DEF为直角三角形,∠EDF=90°,△ABC的顶点B,C分别落在Rt△DEF两直角边DE和DF上,若∠ABD+∠ACD=55°,则∠A的度数是()A.30° B.35° C.40° D.55°9.已知实数a满足,那么的值是()A.2005 B.2006 C.2007 D.200810.已知A(x1,3),B(x2,12)是一次函数y=﹣6x+10的图象上的两点,则下列判断正确的是()A. B.C. D.以上结论都不正确二、填空题(每小题3分,共24分)11.命题“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”中,条件部分是___________.12.“直角三角形的两个锐角互余”的逆命题是______命题填“真”或“假”.13.在平面直角坐标系中,、,点是轴上一点,且,则点的坐标是__________.14.用“如果…,那么…”的形式,写出“对顶角相等”的逆命题:_____________________________.15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为_____.16.如图,在中,,点、分别在、上,连接并延长交的延长线于点,若,,,,则的长为_________.17.下列组数:,﹣,﹣,,3.131131113…(相邻两个3之间依次多一个1),无理数有________个.18.已知可以被10到20之间某两个整数整除,则这两个数是___________.三、解答题(共66分)19.(10分)观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c.根据你发现的规律,请写出:(1)当a=19时,求b,c的值;(2)当a=2n+1时,求b,c的值;(3)用(2)的结论判断15,111,112,是否为一组勾股数,并说明理由.20.(6分)如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证△ACD≌△BFD(2)求证:BF=2AE;(3)若CD=,求AD的长.21.(6分)如图,在四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)求证:AE⊥BD;(2)若AD=2,CD=3,试求四边形ABCD的对角线BD的长.22.(8分)如图,∠ABC=60°,∠1=∠1.(1)求∠3的度数;(1)若AD⊥BC,AF=6,求DF的长.23.(8分)(1)如图①,直线经过正三角形的顶点,在直线上取两点、,使得,,求证:.(2)将(1)中的直线绕着点逆时针方向旋转一个角度到如图②的位置,并使,,通过观察或测量,猜想线段,与之间满足的数量关系,并予以证明.24.(8分)如图,是等边三角形,为上两点,且,延长至点,使,连接.(1)如图1,当两点重合时,求证:;(2)延长与交于点.①如图2,求证:;②如图3,连接,若,则的面积为______________.25.(10分)如图,,,,,垂足分别为,,,,求的长.26.(10分)如图,圆柱的底面半径为,圆柱高为,是底面直径,求一只蚂蚁从点出发沿圆柱表面爬行到点的最短路线,小明设计了两条路线:路线1:高线底面直径,如图所示,设长度为.路线2:侧面展开图中的线段,如图所示,设长度为.请按照小明的思路补充下面解题过程:(1)解:;(2)小明对上述结论有些疑惑,于是他把条件改成:“圆柱底面半径为,高为”继续按前面的路线进行计算.(结果保留)①此时,路线1:__________.路线2:_____________.②所以选择哪条路线较短?试说明理由.

参考答案一、选择题(每小题3分,共30分)1、D【解析】由题意根据平行四边形的性质及全等三角形的判定方法进行分析,从而得到答案.【详解】解:∵,,∴ABCD是平行四边形,∴AO=CO,BO=DO,∵∠AOB=∠COD,∠AOD=∠COB,∴△ABO≌△CDO,△ADO≌△CBO(ASA),∵BD=BD,AC=AC,∴△ABD≌△CDB,△ACD≌△CAB(SAS),∴共有四对.故选:D.【点睛】本题考查全等三角形的判定,解题的关键是熟练掌握平行四边形的性质及全等三角形的判定方法等基本知识.2、C【分析】先把代入原方程,可得关于a的方程,再解方程即得答案.【详解】解:∵方程的解是,∴,解得:a=﹣1.经检验,a=﹣1符合题意.故选:C.【点睛】本题考查了分式方程的解及其解法,属于基本题型,熟练掌握分式方程的解法是解题关键.3、D【分析】根据勾股定理的逆定理:若三边满足,则三角形是直角三角形逐一进行判断即可得出答案.【详解】A,,能组成直角三角形,不符合题意;B,,能组成直角三角形,不符合题意;C,,能组成直角三角形,不符合题意;D,,不能组成直角三角形,符合题意;故选:D.【点睛】本题主要考查勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.4、C【分析】根据三角形具有稳定性可得答案.【详解】解:根据“三角形具有稳定性”可知等腰三角形有稳定性.故C项符合题意.故本题正确答案为C.【点睛】本题主要考查三角形的基本性质:稳定性.5、A【分析】设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x、y的二元一次方程组,进而得到答案.【详解】解:设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x、y的二元一次方程组为:,故选:A;【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.6、D【分析】逐一对选项进行分析即可.【详解】A.不是同类项,不能合并,故该选项错误;B.,故该选项错误;C.,故该选项错误;D.,故该选项正确;故选:D.【点睛】本题主要考查同底数幂的乘除法,积的乘方,掌握同底数幂的乘除法和积的乘方的运算法则是解题的关键.7、A【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【详解】解答:解:∵∠ABC的平分线与∠ACE的平分线交于点D,

∴∠1=∠2,∠3=∠4,

∵∠ACE=∠A+∠ABC,

即∠1+∠2=∠3+∠4+∠A,

∴2∠1=2∠3+∠A,

∵∠1=∠3+∠D,

∴∠D=∠A=×30°=15°.

故选A.

【点睛】点评:本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.8、B【分析】由∠EDF=90°,则∠DBC+∠DCB=90°,则得到∠ABC+∠ACB=145°,根据三角形内角和定理,即可得到∠A的度数.【详解】解:∵∠EDF=90°,∴∠DBC+∠DCB=90°,∵∠ABD+∠ACD=55°,∴∠ABC+∠ACB=90°+55°=145°,∴∠A=;故选:B.【点睛】本题考查了三角形的内角和定理,解题的关键是熟练掌握三角形的内角和定理进行解题.9、C【分析】先根据二次根式有意义的条件求出a的取值范围,然后去绝对值符号化简,再两边平方求出的值.【详解】∵a-1≥0,∴a≥1,∴可化为,∴,∴a-1=20062,∴=1.故选C.【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a的取值范围是解答本题的关键.10、B【分析】根据一次函数y=−6x+10图象的增减性,以及点A和点B的纵坐标的大小关系,即可得到答案.【详解】解:∵一次函数y=−6x+10的图象上的点y随着x的增大而减小,且3<12,∴x1>x2,故选B.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.二、填空题(每小题3分,共24分)11、两条直线都与第三条直线平行;【分析】根据命题的定义:“若p,则q”形式的命题中p叫做命题的条件,q叫做命题的结论,即可判定.【详解】由题意,得该命题的条件部分是:两条直线都与第三条直线平行;故答案为:两条直线都与第三条直线平行.【点睛】此题主要考查对命题概念的理解,熟练掌握,即可解题.12、真【分析】根据给出的命题将其结论与条件互换即得到其逆命题,然后分析其真假即可.【详解】解:逆命题为:如果三角形有两个角互余,则三角形为直角三角形.因为符合三角形内角和定理,故是真命题.故答案为真【点睛】本题主要考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题其中一个命题称为另一个命题的逆命题.13、(,0)【分析】画图,设点的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点的坐标是(x,0),因为PA=OB根据勾股定理可得:AC2+PC2=BD2+PD2所以32+(x+2)2=42+(4-x)2解得所以点的坐标是(,0)故答案为:(,0)【点睛】考核知识点:勾股定理.数形结合,根据勾股定理建立方程是关键.14、如果两个角相等,那么这两个角是对顶角.【分析】先找到命题的题设和结论,再写成“如果…那么…”的形式,再利用把一个命题的题设和结论互换即可得到其逆命题.【详解】解:∵原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,

∴命题“对顶角相等”的逆命题写成“如果…那么…”的形式为:“如果两个角相等,那么它们是对顶角”.

故答案为:如果两个角相等,那么这两个角是对顶角.【点睛】本题考查了命题的条件和结论的叙述以及互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15、45°.【分析】首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,可得出∠2=∠3,∠1=∠4,故∠1+∠2=∠3+∠4,由此即可得出结论.【详解】解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1,∠2=∠3,∴∠1+∠2=∠3+∠4=∠ABC,∵∠ABC=45°,∴∠1+∠2=45°.故答案为:45°.【点睛】此题考查了平行线的性质.解题时注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.16、1【分析】过点C作CG∥FD,证得∠F=∠BED=∠CEF,则CF=CE=3,利用AF=AB+BE=5+BE,在中,根据勾股定理求得BE=10,AC=11,AF=15,利用DE∥CG,求得,利用CG∥FD,求得,即可求得的长.【详解】如图,过点C作CG∥FD交AB于点G,∴∠BED=∠BCG,∠ACG=∠F,∵∠BCA=1∠BED,∴∠BED=∠BCG=∠ACG,∴∠F=∠BED=∠CEF,∴CF=CE=3,∵AF=AB+BE=5+BE,∴AC=AF-CF=5+BE-3=1+BE,在中,∠BAC=90,AB=5,AC=1+BE,BC=CE+BE=3+BE,∴,即,解得:BE=10,∴AC=11,AF=15,∵DE∥CG,∴,∴,∵CG∥FD,∴,∴,∴,解得:BD=1.故答案为:1.【点睛】本题考查了平行线分线段成比例定理,勾股定理的应用,利用勾股定理求得BE的长是解题的关键.17、1.【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】无理数有:-π,,1.111111111…(相邻两个1之间依次多一个1),共有1个.故答案为:1.【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18、15和1;【分析】将利用平方差公式分解因式,根据可以被10到20之间的某两个整数整除,即可得到两因式分别为15和1.【详解】因式分解可得:=(216+1)(216-1)=(216+1)(28+1)(28-1)=(216+1)(28+1)(24+1)(24-1),∵24+1=1,24-1=15,∴232-1可以被10和20之间的15,1两个数整除.【点睛】本题考查因式分解的应用,解题的关键是利用平方差公式分解因式.三、解答题(共66分)19、(1)b=180.c=181;(2)b=2n2+2n,c=2n2+2n+1;(3)不是,理由见解析【解析】试题分析:(1)仔细观察可发现给出的勾股数中,斜边与较大的直角边的差是1,根据此规律及勾股定理公式不难求得b,c的值.(2)根据第一问发现的规律,代入勾股定理公式中即可求得b、c的值.(3)将第二问得出的结论代入第三问中看是否符合规律,符合则说明是一组勾股数,否则不是.试题解析:解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c﹣b=1.∵a=19,a2+b2=c2,∴192+b2=(b+1)2,∴b=180,∴c=181;(2)通过观察知c﹣b=1,∵(2n+1)2+b2=c2,∴c2﹣b2=(2n+1)2,(b+c)(c﹣b)=(2n+1)2,∴b+c=(2n+1)2,又c=b+1,∴2b+1=(2n+1)2,∴b=2n2+2n,c=2n2+2n+1;(3)由(2)知,2n+1,2n2+2n,2n2+2n+1为一组勾股数,当n=7时,2n+1=15,112﹣111=1,但2n2+2n=112≠111,∴15,111,112不是一组勾股数.点睛:此题主要考查学生对勾股数及规律题的综合运用能力.20、(1)见解析;(1)见解析;(3)AD=1+【分析】(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等;(1)根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=1AE,从而得证;(3)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.【详解】(1)∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,∠CAD=∠CBE,AD=BD,∠ADC=∠BDF=90°,∴△ACD≌△BFD(ASA)(1)由(1)可知:BF=AC∵AB=BC,BE⊥AC,∴AC=1AE,∴BF=1AE;(3)∵△ACD≌△BFD,∴DF=CD=,在Rt△CDF中,CF=,∵BE⊥AC,AE=EC,∴AF=CF=1.∴AD=AF+DF=1+【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.21、(1)见解析;(2)【分析】(1)由旋转的性质可得AC=BC,∠DBC=∠CAE,即可得∠ACB=90°,根据直角三角形的性质可得AE⊥BD,

(2)由旋转的性质可得CD=CE=3,BD=AE,∠DCE=∠ACB=90°,由勾股定理可求BD的长.【详解】(1)如图,设AC与BD的交点为点M,BD与AE的交点为点N,

∵旋转

∴AC=BC,∠DBC=∠CAE

又∵∠ABC=45°,

∴∠ABC=∠BAC=45°,

∴∠ACB=90°,

∵∠DBC+∠BMC=90°

∴∠AMN+∠CAE=90°

∴∠AND=90°

∴AE⊥BD,

(2)如图,连接DE,

∵旋转

∴CD=CE=3,BD=AE,∠DCE=∠ACB=90°

∴DE==3,∠CDE=45°

∵∠ADC=45°

∴∠ADE=90°

∴EA==

∴BD=.【点睛】此题考查旋转的性质,勾股定理,熟练运用旋转的性质解决问题是本题的关键.22、(1)60°;(1)3【分析】(1)由三角形的外角性质,得到∠3=∠1+∠ABF,由∠1=∠1,得到∠3=∠ABC,即可得到答案;(1)由(1)∠3=∠ABC=60°,由AD⊥BC,则∠1=∠1=30°,则∠ABF=30°=∠1,则BF=AF=6,即可求出DF的长度.【详解】解:(1)根据题意,由三角形的外角性质,得∠3=∠1+∠ABF,∵∠1=∠1,∴∠3=∠1+∠ABF,∵∠ABC=∠ABF+∠1=60°,∴∠3=60°;(1)由(1)可知,∠3=60°,∵AD⊥BC,∴∠ADB=90°,∴∠1=30°,∴,∵∠3=∠1+∠ABF,∴∠ABF=30°,∵∠1=∠1=30°,∴∠ABF=∠1=30°,∴BF=AF=6,∴.【点睛】本题考查了30°直角三角形的性质,三角形的外角性质,以及等角对等边,解题的关键是熟练掌握所学的性质进行求解.23、(1)证明见解析;(2),理由见解析.【分析】(1)通过等边三角形的性质和等量代换得出,利用AAS可证≌,则有,,则结论可证;(2)通过等边三角形的性质和等量代换得出,利用AAS可证≌,则有,,则可以得出;【详解】(1)∵在正三角形中,,∴又∵∴在和中,∴≌()∴,∴(2)猜想:证明:∵在正三角形中,∴∵∴∴在和中∴≌()∴,∴【点睛】本题主要考查全等三角形的判定及性质,掌握全等三角形的判定及性质是解题的关键.24、(1)见解析;(1)①见解析;②1.【分析】(1)当D、E两点重合时,则AD=CD,然后由等边三角形的性质可得∠CBD的度数,根据等腰三角形的性质和三角形的外角性质可得∠F的度数,于是可得∠CBD与∠F的关系,进而可得结论;(1)①过点E作EH∥BC交AB于点H,连接BE,如图4,则易得△AHE是等边三角形,根据等边三角形的性质和已知条件可得EH=CF,∠BHE=∠ECF=110°,BH=EC,于是可根据SAS证明△BHE≌△ECF,可得∠EBH=∠FEC,易证△BAE≌△BCD,可得∠ABE=∠CBD,从而有∠FEC=∠CBD,然后根据三角形的内角和定理可得∠BGE=∠BCD,进而可得结论;②易得∠BEG=90°,于是可知△BEF是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE和BF的长,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM、MC、CF、FN、CN、GN的长,进而可得△GCN也是等腰直角三角形,于是有∠BCG=90°,故所求的△BCG的面积=,而BC和CG可得,问题即得解决.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,当D、E两点重合时,则AD=CD,∴,∵,∴∠F=∠CDF,∵∠F+∠CDF=∠ACB=60°,∴∠F=30°,∴∠CBD=∠F,∴;(1)①∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC,过点E作EH∥BC交AB于点H,连接BE,如图4,则∠AHE=∠ABC=60°,∠AEH=∠ACB=60°,∴△AHE是等边三角形,∴AH=AE=HE,∴BH=EC,∵,CD=CF,∴EH=CF,又∵∠BHE=∠ECF=110°,∴△BHE≌△ECF(SAS),∴∠EBH=∠FEC,EB=EF,∵BA=BC,∠A=∠ACB=60°,AE=C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论