2025届海南省儋州三中学数学八上期末综合测试试题含解析_第1页
2025届海南省儋州三中学数学八上期末综合测试试题含解析_第2页
2025届海南省儋州三中学数学八上期末综合测试试题含解析_第3页
2025届海南省儋州三中学数学八上期末综合测试试题含解析_第4页
2025届海南省儋州三中学数学八上期末综合测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届海南省儋州三中学数学八上期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A. B. C. D.2.以下列选项中的数为长度的三条线段中,不能组成直角三角形的是()A.8,15,17 B.4,6,8 C.3,4,5 D.6,8,103.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1、2、3 B.2、3、6 C.4、6、8 D.5、6、124.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是()A. B. C. D.5.小颖在做下面的数学作业时,因钢笔漏墨水,不小心将部分字迹污损了,作业过程如下(涂黑部分即为污损部分):如图,OP平分∠AOB,MN∥OB,试说明:OM=MN.理由:因为OP平分∠AOB,所以■,又因为MN∥OB,所以■,故∠1=∠3,所以OM=MN.小颖思考:污损部分应分别是以下四项中的两项:①∠1=∠2;②∠2=∠3;③∠3=∠4;④∠1=∠4.那么她补出来的部分应是()A.①④ B.②③C.①② D.③④6.已知4y2+my+9是完全平方式,则m为()A.6 B.±6 C.±12 D.127.下列条件中,不能作出唯一三角形的是()A.已知三角形两边的长度和夹角的度数B.已知三角形两个角的度数以及两角夹边的长度C.已知三角形两边的长度和其中一边的对角的度数D.已知三角形的三边的长度8.五一”期间,某班同学包租一辆面包车前去东方太阳城游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费,若设原来参加游览的同学有x人,为求x,可列方程为(

)A. B. C. D.9.已知xm=6,xn=3,则x2m―n的值为(

)A.9 B. C.12 D.10.如图,菱形的对角线长分别为,则这个菱形面积为()A. B. C. D.二、填空题(每小题3分,共24分)11.在Rt△ABC中,∠ACB=90°,D为AB上的中点,若CD=5cm,则AB=_____________cm.12.如图,在直角坐标系中有两条直线,l1:y=x+1和L2:y=ax+b,这两条直线交于轴上的点(0,1)那么方程组的解是_____.13.若点B(m+4,m-1)在x轴上,则m=_____;14.如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)和(3,0),点C是y轴上的一个动点,连接AC、BC,则△ABC周长的最小值是_____.15.十二边形的内角和度数为_________.16.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为________.17.如图所示,是由截面相同的长方形墙砖粘贴的部分墙面,根据图中信息可得每块墙砖的截面面积是__________.18.已知一个三角形的三边长为3、8、a,则a的取值范围是_____________.三、解答题(共66分)19.(10分)如图,在▱ABCD中,过B点作BM⊥AC于点E,交CD于点M,过D点作DN⊥AC于点F,交AB于点N.(1)求证:四边形BMDN是平行四边形;(2)已知AF=12,EM=5,求AN的长.20.(6分)在中,垂直平分,分别交、于点、,垂直平分,分别交,于点、.⑴如图①,若,求的度数;⑵如图②,若,求的度数;⑶若,直接写出用表示大小的代数式.21.(6分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.72.13.12.35.22.87.34.34.86.74.55.16.58.92.24.53.23.24.53.53.53.53.64.93.73.85.65.55.96.25.73.94.04.07.03.79.54.26.43.54.54.54.65.45.66.65.84.56.27.5频数分布表分组

划记

频数

2.0<x≤3.5

正正

11

3.5<x≤5.0

19

5.0<x≤6.5

6.5<x≤8.0

8.0<x≤9.5

2

合计

50

(1)把上面频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?22.(8分)解不等式组:,并求出它的最小整数解.23.(8分)已知:一次函数的图象经过两点.求该一次函数表达式.24.(8分)如图,ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与B,C重合),连结AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BAD=20°时,∠EDC=°;(2)请你回答:“当DC等于时,ABDDCE”,并把“DC等于”作为已知条件,证明ABDDCE;(3)在D点的运动过程中,ADE的形状也在改变,判断当∠BAD等于时,ADE是等腰三角形.(直接写出结果,不写过程)25.(10分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试,根据测试成绩分布情况,他们将全部测试成绩分成、、、四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计图表组别分数/分频数各组总分/分依据以上统计信息,解答下列问题:(1)求得_____,______;(2)这次测试成绩的中位数落在______组;(3)求本次全部测试成绩的平均数.26.(10分)某区为加快美丽乡村建设,建设秀美幸福薛城,对A,B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;甲镇建设了2个A类村庄和5个B类村庄共投人资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)乙镇3个A类美丽村庄和6个B类美丽村庄的改建共需资金多少万元?

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、不是轴对称图形,故本选项正确;

B、是轴对称图形,故本选项错误;

C、是轴对称图形,故本选项错误;

D、是轴对称图形,故本选项错误;

故选:A.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、B【解析】试题解析:A.

故是直角三角形,故错误;B.

故不是直角三角形,正确;C.

故是直角三角形,故错误;D.

故是直角三角形,故错误.故选B.点睛:如果三角形中两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.3、C【分析】根据三角形的两边之和大于第三边,两边之差小于第三边即可求解.【详解】解:选项A:1+2=3,两边之和等于第三边,故选项A错误;选项B:2+3=5<6,两边之和小于第三边,故选项B错误;选项C:符合三角形的两边之和大于第三边,两边之差小于第三边,故选项C正确;选项D:5+6=11<12,两边之和小于第三边,故选线D错误;故选:C.【点睛】本题考查三角形的三边之间的关系,属于基础题,熟练掌握三角形的三边之间的关系是解决本题的关键.4、C【详解】设用x张制作盒身,y张制作盒底,根据题意得:故选C.【点睛】此题考查二元一次方程组问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.5、C【解析】∵OP平分∠AOB,∴∠1=∠2,∵MN∥OB,∴∠2=∠3,所以补出来的部分应是:①、②.故选C.点睛:掌握平行线的性质、角平分线的性质.6、C【分析】原式利用完全平方公式的结构特征求出m的值即可.【详解】∵4y2+my+9是完全平方式,∴m=±2×2×3=±1.故选:C.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解题的关键.7、C【解析】看是否符合所学的全等的公理或定理即可.【详解】A、符合全等三角形的判定SAS,能作出唯一三角形;

B、两个角对应相等,夹边确定,如这样的三角形可作很多则可以依据ASA判定全等,因而所作三角形是唯一的;

C、已知两边和其中一边的对角对应相等,也不能作出唯一三角形,如等腰三角形底边上的任一点与顶点之间的线段两侧的三角形;

D、符合全等三角形的判定SSS,能作出唯一三角形;故选C.【点睛】本题主要考查由已知条件作三角形,可以依据全等三角形的判定来做.8、D【解析】设实际参加游览的同学共x人,则原有的几名同学每人分担的车费为:元,出发时每名同学分担的车费为:,根据每个同学比原来少摊了1元钱车费即可得到等量关系.解:设实际参加游览的同学共x人,

根据题意得:=1.

故选D.“点睛”本题主要考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;易错点是得到出发前后的人数.9、C【解析】试题解析:试题解析:∵xm=6,xn=3,∴x2m-n==36÷3=12.故选C.10、A【解析】直接根据菱形的面积等于它的两条对角线的乘积的一半求出答案即可.【详解】∵AC=5cm,BD=8cm,∴菱形的面积=×5×8=10cm1.故选:A.【点睛】本题考查了菱形的性质,熟知菱形ABCD的面积等于对角线乘积的一半是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴线段CD是斜边AB上的中线;又∵CD=5cm,∴AB=2CD=1cm.故答案是:1.【点睛】本题考查了直角三角形斜边上的中线.直角三角形斜边上的中线等于斜边的一半.12、.【分析】根据两条直线交于轴上的点(0,1),于是得到结论.【详解】∵l1:y=x+1和l2:y=ax+b,这两条直线交于轴上的点(0,1),∴方程组的解是,故答案为:.【点睛】本题考查了解方程组的问题,掌握解方程组的方法是解题的关键.13、1【分析】由题意直接根据x轴上的点的纵坐标为0列出方程求解即可.【详解】解:∵点B(m+4,m-1)在x轴上,∴m-1=0,∴m=1.故答案为:1.【点睛】本题考查点的坐标,熟记x轴上的点的纵坐标为0是解题的关键.14、【分析】作AD⊥OB于D,则∠ADB=90°,OD=1,AD=3,OB=3,得出BD=2,由勾股定理求出AB即可;由题意得出AC+BC最小,作A关于y轴的对称点,连接交y轴于点C,点C即为使AC+BC最小的点,作轴于E,由勾股定理求出,即可得出结果.【详解】解:作AD⊥OB于D,如图所示:则∠ADB=90°,OD=1,AD=3,OB=3,∴BD=3﹣1=2,∴AB=;要使△ABC的周长最小,AB一定,则AC+BC最小,作A关于y轴的对称点,连接交y轴于点C,点C即为使AC+BC最小的点,作轴于E,由对称的性质得:AC=,则AC+BC=,=3,OE=1,∴BE=4,由勾股定理得:=,∴△ABC的周长的最小值为.故答案为:.【点睛】本题主要考查最短路径问题,关键是根据轴对称的性质找到对称点,然后利用勾股定理进行求解即可.15、1800°【分析】根据n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【详解】解:十二边形的内角和为:(n﹣2)•180°=(12﹣2)×180°=1800°.故答案为1800°.【点睛】本题考查了多边形的内角和的知识,解决本题的关键是正确运用多边形的内角和公式,要求同学们熟练掌握.16、1.1【分析】根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,再求出∠DAE=∠EAB=30°,然后根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,再根据等角对等边求出AD=DF,然后求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【详解】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=∠BAD=×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°﹣60°=30°,∴AD=AB=×11=1.1,∴DF=1.1.故答案为1.1.考点:等腰三角形的判定与性质;含30度角的直角三角形.17、【分析】设每块墙砖的长为xcm,宽为ycm,根据题意,有“三块横放的墙砖比一块竖放的墙砖高5cm,两块横放的墙砖比两块竖放的墙砖低18cm”列方程组求解可得.【详解】解:设每块墙砖的长为xcm,宽为ycm,根据题意得:,解得:,∴每块墙砖的截面面积是:;故答案为:112.【点睛】本题主要考查二元一次方程组的应用,理解题意找到题目蕴含的相等关系列方程组是解题的关键.18、5<a<1【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得8-3<a<8+3,再解即可.【详解】解:根据三角形的三边关系可得:8-3<a<8+3,

解得:5<a<1,

故答案为:5<a<1.【点睛】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.三、解答题(共66分)19、(1)详见解析;(2)1.【解析】(1)只要证明DN∥BM,DM∥BN即可;(2)只要证明△CEM≌△AFN,可得FN=EM=5,在Rt△AFN中,根据勾股定理AN=即可解决问题.【详解】解:(1)∵四边形ABCD是平行四边形,∴CD∥AB,∵BM⊥AC,DN⊥AC,∴DN∥BM,∴四边形BMDN是平行四边形;(2)∵四边形BMDN是平行四边形,∴DM=BN,∵CD=AB,CD∥AB,∴CM=AN,∠MCE=∠NAF,∵∠CEM=∠AFN=90°,∴△CEM≌△AFN,∴FN=EM=5,在Rt△AFN中,AN===1.【点睛】本题考查平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、(1)∠EAN=44°;(2)∠EAN=16°;(3)当0<α<90°时,∠EAN=180°-2α;当α>90°时,∠EAN=2α-180°.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角可得∠BAE=∠B,同理可得,∠CAN=∠C,然后利用三角形的内角和定理求出∠B+∠C,再根据∠EAN=∠BAC-(∠BAE+∠CAN)代入数据进行计算即可得解;(2)同(1)的思路,最后根据∠EAN=∠BAE+∠CAN-∠BAC代入数据进行计算即可得解;(3)根据前两问的求解,分α<90°与α>90°两种情况解答.【详解】(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC-∠BAE-∠CAN=∠BAC-(∠B+∠C),在△ABC中,∠B+∠C=180°-∠BAC=180°-112°=68°,∴∠EAN=∠BAC-(∠BAE+∠CAN)=112°-68°=44°;(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN-∠BAC=(∠B+∠C)-∠BAC,在△ABC中,∠B+∠C=180°-∠BAC=180°-82°=98°,∴∠EAN=∠BAE+∠CAN-∠BAC=98°-82°=16°;(3)当0<α<90°时,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN-∠BAC=(∠B+∠C)-∠BAC,在△ABC中,∠B+∠C=180°-∠BAC=180°-α,∴∠EAN=∠BAE+∠CAN-∠BAC=180°-α-α=180°-2α;当α>90°时,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC-∠BAE-∠CAN=∠BAC-(∠B+∠C),在△ABC中,∠B+∠C=180°-∠BAC=180°-α,∴∠EAN=∠BAC-(∠BAE+∠CAN)=α-(180°-α)=2α-180°.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,整体思想的利用是解题的关键.21、详见解析【分析】(1)根据题中给出的50个数据,从中分别找出5.0<x≤6.5与6.5<x≤8.0的个数,进行划记,得到对应的频数,进而完成频数分布表和频数分布直方图.(2)本题答案不唯一.例如:从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户.(3)由于50×60%=30,所以为了鼓励节约用水,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而11+19=30,故家庭月均用水量应该定为5吨.【详解】解:(1)频数分布表如下:分组

划记

频数

2.0<x≤3.5

正正

11

3.5<x≤5.0

19

5.0<x≤6.5

13

6.5<x≤8.0

5

8.0<x≤9.5

2

合计

50

频数分布直方图如下:(2)从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户.(3)要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为5吨,因为月平均用水量不超过5吨的有30户,30÷50=60%.22、不等式组的解集是:1≤x<4,最小整数解是1【分析】通过去分母,移项,合并同类项,未知数系数化为1,即可求解.【详解】,解不等式①得:x≥1,解不等式②得:x<4,∴不等式组的解集是:1≤x<4,∴最小整数解是1.【点睛】本题主要考查一元一次不等式组的解法,掌握解一元一次不等式组的基本步骤,是解题的关键.23、y=x+2【分析】将点M、N的坐标代入解析式,求出方程组的解即可得到函数表达式.【详解】将点M、N的坐标代入解析式,得,解得:则该函数表达式为:.【点睛】此题考查待定系数法求函数解析式,掌握正确的解法即可正确解答.24、(1)20;(2)2;2;证明见解析;(3)30°或60°【分析】(1)根据外角等于不相邻两内角和可解题;(2)当DC=AB=2时,即可求证△ABD≌△DCE;(3)分类谈论,①若AD=AE时;②若DA=DE时,③若EA=ED时,即可解题.【详解】解:(1)∵∠BAD=20°,∠B=40°,∴∠ADC=60°,∵∠ADE=40°,∴∠EDC=20°.(2)DC=AB=2时,∵AB=AC=2,∴∠B=∠C,∵∠BAD=180°-∠B-∠ADB=180°-40°-∠ADB=140°-∠ADB,∠CDE=180°-∠ADE-∠ADB=180°-40°-∠ADB=140°-∠ADB,∴∠BAD=∠CDE.在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)∵AB=AC,∴∠B=∠C=40°,①若A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论