版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省无锡市江阴市南菁高级中学数学八年级第一学期期末经典试题期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如果一次函数的图象与直线平行且与直线y=x-2在x轴上相交,则此函数解析式为()A. B. C. D.2.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3.若,则的值是A. B. C. D.4.下列四组数据中,不能作为直角三角形的三边长的是()A.7,24,25 B.6,8,10 C.9,12,15 D.3,4,65.方差:一组数据:2,,1,3,5,4,若这组数据的中位数是3,是这组数据的方差是()A.10 B. C.2 D.6.已知三角形两边的长分别是和,则此三角形第三边的长可能是()A. B. C. D.7.如图,在RtΔABC中,∠A=90°,∠ABC的平分线交AC于点D,AD=3,BC=10,则ΔBDC的面积是()
A.15 B.12 C.30 D.108.如图,正方期ABCD的边长为4,点E在对角线BD上,且为F,则EF的长为()A.2 B. C. D.9.元旦期间,灯塔市辽东商业城“女装部”推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动.某顾客在女装部购买了原价元,在男装部购买了原价元的服装各一套,优惠前需付元,而她实际付款元,根据题意列出的方程组是()A. B.C. D.10.若,则下列式子错误的是()A. B. C. D.11.在平面直角坐标系中,点A(2,3)与点B关于y轴对称,则点B的坐标为A.(-2,3) B.(-2,-3) C.(2,-3) D.(-3,-2)12.已知是三角形的三边长,如果满足,则三角形的形状是()A.等腰三角形 B.等边三角形 C.直角三角形 D.钝角三角形二、填空题(每题4分,共24分)13.若式子在实数范围内有意义,则的取值范围是__________.14.在实数范围内规定一种新的运算“☆”,其规则是:a☆b=3a+b,已知关于x的不等式:x☆m>1的解集在数轴上表示出来如图所示.则m的值是________.15.计算的结果是_________.16.在平面直角坐标系中,点P(2,3)关于y轴对称的点的坐标是_____.17.如图所示,在△ABC中,,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到直线AB的距离是______cm.18.给出下列5种图形:①平行四边形②菱形③正五边形、④正六边形、⑤等腰梯形中,既是轴对称又是中心对称的图形有________个.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,点,点.(1)若点关于轴、轴的对称点分别是点、,请分别描出、并写出点、的坐标;(2)在轴上求作一点,使最小(不写作法,保留作图痕迹)20.(8分)如图,在中,,,点是边上的动点(点与点、不重合),过点作交射线于点,联结,点是的中点,过点、作直线,交于点,联结、.(1)当点在边上,设,.①写出关于的函数关系式及定义域;②判断的形状,并给出证明;(2)如果,求的长.21.(8分)如图是由边长为1个单位长度的小正方形组成的网格,的三个顶点都在格点上.(1)作出关于轴对称的,并写出点的坐标:.(2)求出的面积.22.(10分)如图1,把一张长方形的纸片ABCD沿对角线BD折叠,点C落在E处,BE交AD于点F.(1)求证:FB=FD;(2)如图2,连接AE,求证:AE∥BD;(3)如图3,延长BA,DE相交于点G,连接GF并延长交BD于点H,求证:GH垂直平分BD.23.(10分)数学课上,张老师出示了如下框中的题目.已知,在中,,,点为的中点,点和点分别是边和上的点,且始终满足,试确定与的大小关系.小明与同桌小聪讨论后,进行了如下解答:(1)(特殊情况,探索结论)如图1,若点与点重合时,点与点重合,容易得到与的大小关系.请你直接写出结论:____________(填“”,“”或“”).(2)(特例启发,解答题目)如图2,若点不与点重合时,与的大小关系是:_________(填“”,“”或“”).理由如下:连结,(请你完成剩下的解答过程)(3)(拓展结论,设计新题)在中,,点为的中点,点和点分别是直线和直线上的点,且始终满足,若,,求的长.(请你直接写出结果)24.(10分)如图,已知直线与直线AC交于点A,与轴交于点B,且直线AC过点和点,连接BD.(1)求直线AC的解析式.(2)求交点A的坐标,并求出的面积.(3)在x轴上是否存在一点P,使得周长最小?若存在,求出点P的坐标;若不存在,请说明理由.25.(12分)为响应低碳号召,张老师上班的交通工具由自驾车改为骑自行车,张老师家距学校15千米,因为自驾车的速度是自行车速度的3倍,所以张老师每天比原来早出发小时,才能按原来时间到校,张老师骑自行车每小时走多少千米?26.某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?
参考答案一、选择题(每题4分,共48分)1、A【分析】设所求的直线的解析式为,先由所求的直线与平行求出k的值,再由直线与直线y=x-2在x轴上相交求出b的值,进而可得答案.【详解】解:设所求的直线的解析式为,∵直线与直线平行,∴,∵直线y=x-2与x轴的交点坐标为(2,0),直线与直线y=x-2在x轴上相交,∴,解得:b=﹣3;∴此函数的解析式为.故选:A.【点睛】本题考查了直线与坐标轴的交点以及利用待定系数法求一次函数的解析式,属于常见题型,正确理解题意、熟练掌握一次函数的基本知识是解题的关键.2、D【详解】试题分析:添加A可以利用ASA来进行全等判定;添加B可以利用SAS来进行判定;添加C选项可以得出AD=AE,然后利用SAS来进行全等判定.考点:三角形全等的判定3、C【解析】∵,∴b=a,c=2a,则原式.故选C.4、D【分析】根据勾股定理的逆定理:若三边满足,则三角形是直角三角形逐一进行判断即可得出答案.【详解】A,,能组成直角三角形,不符合题意;B,,能组成直角三角形,不符合题意;C,,能组成直角三角形,不符合题意;D,,不能组成直角三角形,符合题意;故选:D.【点睛】本题主要考查勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.5、B【分析】先根据中位数是3,得到数据从小到大排列时与3相邻,再根据中位数的定义列方程求解即得的值,最后应用方差计算公式即得.【详解】∵这组数据的中位数是3∴这组数据按照从小到大的排列顺序应是1,2,,3,4,5或1,2,3,,4,5∴解得:∴这组数据是1,2,3,3,4,5∴这组数据的平均数为∵∴故选:B.【点睛】本题考查了中位数的定义和方差的计算公式,根据中位数定义应用方程思想确定的值是解题关键,理解“方差反映一组数据与平均值的离散程度”有助于熟练掌握方差计算公式.6、C【分析】根据三角形的三边关系可直接解答本题.【详解】解:三角形的两边长分别是3和8,设第三边长为c,根据三角形的三边关系可得:,可知c可取值8;故选:C.【点睛】本题是基础题,根据已知的两边的长度,求出第三条边的取值范围,即可正确解答.7、A【分析】作垂直辅助线构造新三角形,继而利用AAS定理求证△ABD与△EBD全等,最后结合全等性质以及三角形面积公式求解本题.【详解】作DE⊥BC,如下图所示:
∵BD是∠ABC的角平分线,∴∠ABD=∠EBD.又∵∠A=∠DEB=90°,BD=BD,∴,∴DE=DA=1.在△BDC中,.故选:A.【点睛】本题考查全等三角形的判定和性质,该题辅助线的做法较为容易,有角度相等以及公共边的提示,图形构造完成后思路便会清晰,后续只需保证计算准确即可.8、D【分析】在AF上取FG=EF,连接GE,可得△EFG是等腰直角三角形,根据等腰直角三角形的性质可得EG=,∠EGF=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAE+∠AEG=∠EGF,然后求出∠BAE=∠AEG=22.5°,根据等角对等边可得AG=EG,再根据正方形的对角线平分一组对角求出∠ABD=45°,然后求出△BEF是等腰直角三角形,根据等腰直角三角形的性质可得BF=EF,设EF=x,最后根据AB=AG+FG+BF列方程求解即可.【详解】解:如图,在AF上取FG=EF,连接GE,
∵EF⊥AB,
∴△EFG是等腰直角三角形,∴EG=EF,∠EGF=45°,由三角形的外角性质得,∠BAE+∠AEG=∠EGF,
∵∠BAE=22.5°,∠EGF=45°,
∴∠BAE=∠AEG=22.5°,
∴AG=EG,
在正方形ABCD中,∠ABD=45°,
∴△BEF是等腰直角三角形,
∴BF=EF,
设EF=x,∵AB=AG+FG+BF,∴4=x+x+x,解得x=故选:D.【点睛】本题考查了正方形的性质,等腰直角三角形的判定与性质,难点在于作辅助线构造出等腰直角三角形并根据正方形的边长AB列出方程.9、D【分析】根据“优惠前需付元,而她实际付款元”,列出关于x,y的二元一次方程组,即可得到答案.【详解】根据题意得:,故选D.【点睛】本题主要考查二元一次方程组的实际应用,掌握等量关系,列出方程组,是解题的关键.10、B【分析】根据不等式的基本性质逐一判断即可.【详解】A.将不等式的两边同时减去3,可得,故本选项正确;B.将不等式的两边同时乘(-1),可得,再将不等式的两边同时加3,可得,故本选项错误;C.将不等式的两边同时加2,可得,所以,故本选项正确;D.将不等式的两边同时除以3,可得,故本选项正确.故选B.【点睛】此题考查的是不等式的变形,掌握不等式的基本性质是解决此题的关键.11、A【解析】根据关于y轴对称的点的横坐标互为相反数,纵坐标不变进行求解即可.【详解】∵点A(2,3)与点B关于y轴对称,∴点B的坐标为(-2,3),故选A.【点睛】本题考查了关于y轴对称的点的坐标特征,熟练掌握坐标的变化规律是解题的关键.12、C【分析】根据非负数的性质可知a,b,c的值,再由勾股定理的逆定理即可判断三角形为直角三角形.【详解】解:∵∴,,,∴,,又∵,故该三角形为直角三角形,故答案为:C.【点睛】本题考查了非负数的性质及勾股定理的逆定理,解题的关键是解出a,b,c的值,并正确运用勾股定理的逆定理.二、填空题(每题4分,共24分)13、a>﹣1【分析】根据二次根式和分式有意义的条件可得a+1>0,再解不等式即可.【详解】由题意得:a+1>0,解得:a>﹣1,故答案为:a>﹣1.【点睛】此题主要考查了二次根式和分式有意义,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.14、-2【分析】根据新运算法则得到不等式3,通过解不等式即可求的取值范围,结合图象可以求得的值.【详解】∵☆,
∴,
根据图示知,已知不等式的解集是,∴,
故答案为:.【点睛】本题主要考查了数轴上表示不等式的解集及解不等式,本题的关键是理解新的运算方法.15、.【分析】先将括号内的进行通分,再进行因式分解,把除法转化为乘法,最后进行分式间的约分化简即可.【详解】==.故答案为:.【点睛】本题考查了分式的化简,分式的化简关键在于把分式的加减通过通分、合并同类项、因式分解,进而通过约分转化为最简分式.16、(﹣2,3)【分析】根据点关于坐标轴对称:关于y轴对称纵坐标不变,横坐标变为原来相反数可得出答案.【详解】解:点关于y轴对称的点的坐标是,故答案为:.【点睛】本题考查点关于坐标轴对称的问题,解题关键在于关于y轴对称纵坐标不变,横坐标变为原来相反数可得出答案.17、1【分析】根据BD,BC可求CD的长度,根据角平分线的性质作DE⊥AB,则点到直线AB的距离即为DE的长度.【详解】过点D作DE⊥AB于点E∵BC=8cm,BD=5cm,∴CD=1cm∵AD平分∠CAB,CD⊥AC∴DE=CD=1cm∴点到直线AB的距离是1cm故答案为:1.【点睛】本题主要考查角平分线的性质,熟练掌握角平分线的性质,合理添加辅助线是解题的关键.18、2【分析】根据轴对称图形与中心对称图形的概念和平行四边形、菱形、正五边形、正六边形、等腰梯形的性质求解.【详解】解:①是中心对称图形;②为轴对称图形也为中心对称图形;③为轴对称图形;④为轴对称图形也为中心对称图形;⑤为轴对称图形.故答案为:2.【点睛】此题考查轴对称图形,中心对称图形.解题关键在于掌握当轴对称图形的对称轴是偶数条时,一定也是中心对称图形;偶数边的正多边形既是轴对称图形,也是中心对称图形;奇数边的正多边形只是轴对称图形.三、解答题(共78分)19、(1)点坐标为(4,-4),点坐标为(-4,4);(2)见解析【分析】(1)利用关于坐标轴对称点坐标关系得出C,D两点坐标即可;
(2)连接BD交y轴于点P,P点即为所求.【详解】(1)如图所示:点坐标为(4,-4),点坐标为(-4,4);(2)连接交轴于点,点即为所求;【点睛】此题主要考查了关于坐标轴对称点的性质以及轴对称-最短路线问题,根据轴对称的性质得出对称点的坐标是解题关键.20、(1)①;②详见解析;(2)或【分析】(1)①先证△DEB为等腰直角三角形,设DB=x,CE=y知EB=x,由EB+CE=4知x+y=4,从而得出答案;
②由∠ADE=90°,点F是AE的中点知CF=AF=AE,DF=AF=AE,据此得出CF=DF,再由∠CFE=2∠CAE,∠EFD=2∠EAD知∠CFD=∠CFE+∠EFD=2∠CAE+2∠EAD=2∠CAD,结合∠CAB=45°知∠CFD=90°,据此可得答案;
(2)分点E在BC上和BC延长线上两种情况,分别求出DF、GF的长,从而得出答案.【详解】(1)①∵,,,,又,为等腰直角三角形,,,,又,,;②,,,点是的中点,,,,∠CAF=∠ACF,∠EAD=∠FDA,,,,,,是等腰直角三角形;(2)如图,当点在上时,,,在中,,则,∴sin∠CAE=,又,由(2)得:,∴∠CFG=90°,∴∴,;如图,当点在延长线上时,,同理可得,在中,,,综上所述:DG的长为或.【点睛】本题主要是三角形的综合问题,解题的关键是掌握等腰直角三角形的判定和性质、勾股定理、直角三角形斜边上的中线等于斜边的一半等知识点.21、(1)见解析(2)5【分析】(1)直接利用关于y轴对称点的性质得出对应点位置进而得出答案;
(2)直接利用△A′B′C′所在矩形面积减去周围三角形的面积进而得出答案.【详解】解:(1)如图所示,为所作三角形,点的坐标:(-1,2);(2)=5.【点睛】本题主要考查了轴对称变换,正确得出对应点位置是解题关键.22、(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】试题分析:(1)根据矩形的性质和折叠的性质可得:AB=DC=DE,∠BAD=∠BCD=∠BED=90°,根据AAS可证△ABF≌△EDF,根据全等三角形的性质可证BF=DF;(2)根据全等三角形的性质可证:FA=FE,根据等边对等角可得:∠FAE=∠FEA,根据三角形内角和定理可证:2∠AEF+∠AFE=2∠FBD+∠BFD=180°,所以可证∠AEF=∠FBD,根据内错角相等,两直线平行可证AE∥BD;(3)根据矩形的性质可证:AD=BC=BE,AB=CD=DE,BD=DB,根据SSS可证:△ABD≌△EDB,根据全等三角形的性质可证:∠ABD=∠EDB,根据等角对等边可证:GB=GD,根据HL可证:△AFG≌△EFG,根据全等三角形的性质可证:∠AGF=∠EGF,所以GH垂直平分BD.试题解析:(1)∵长方形ABCD,∴AB=DC=DE,∠BAD=∠BCD=∠BED=90°,在△ABF和△DEF中,∴△ABF≌△EDF(AAS),∴BF=DF.(2)∵△ABF≌△EDF,∴FA=FE,∴∠FAE=∠FEA,又∵∠AFE=∠BFD,且2∠AEF+∠AFE=2∠FBD+∠BFD=180°,∴∠AEF=∠FBD,∴AE∥BD,(3)∵长方形ABCD,∴AD=BC=BE,AB=CD=DE,BD=DB,∴△ABD≌△EDB(SSS),∴∠ABD=∠EDB,∴GB=GD,在△AFG和△EFG中,∠GAF=∠GEF=90°,FA=FE,FG=FG,∴△AFG≌△EFG(HL),∴∠AGF=∠EGF,∴GH垂直平分BD.【方法II】(1)∵△BCD≌△BED,∴∠DBC=∠EBD又∵长方形ABCD,∴AD∥BC,∴∠ADB=∠DBC,∴∠EBD=∠ADB,∴FB=FD.(2)∵长方形ABCD,∴AD=BC=BE,又∵FB=FD,∴FA=FE,∴∠FAE=∠FEA,又∵∠AFE=∠BFD,且2∠AEF+∠AFE=2∠FBD+∠BFD=180°,∴∠AEF=∠FBD,∴AE∥BD,(3)∵长方形ABCD,∴AD=BC=BE,AB=CD=DE,BD=DB,∴△ABD≌△EDB,∴∠ABD=∠EDB,∴GB=GD,又∵FB=FD,∴GF是BD的垂直平分线,即GH垂直平分BD.考点:1.折叠的性质;2.全等三角形的判定与性质;3.平行线的性质与判定;4.矩形的性质.23、(1)=;(2)=,理由见解析;(1)1或1【分析】(1)根据等直角三角形斜边的中线等于斜边的一半解答即可;(2)连结,证明△BDE≌△ADF即可;(1)分四种情况求解:①当点E在BA的延长线上,点F在AC的延长线上;②当点E在AB的延长线上,点F在CA的延长线上;③当点E在AB的延长线上,点F在AC的延长线上;④当点E在BA的延长线上,点F在CA的延长线上.【详解】(1)∵,,∴∠ACD=45°.∵,点为的中点,∴∠CAD=45°,∴∠CAD=∠ACD,∴AD=CD,即DE=DF;(2)连结,∵,点为的中点,∴AD==BD.∵,,点为的中点,∴∠B=∠C=∠CAD=∠BAD=45°,AD⊥BC,∴∠ADE+∠BDE=90°.∵DE⊥DF,∴∠ADE+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,∵∠B=∠CAD=45°,AD=BD,∠BDE=∠ADF,∴△BDE≌△ADF,∴DE=DF;(1)①当点E在BA的延长线上,点F在AC的延长线上,如图1,由(2)知,AD=CD,∠CAD=∠ACB=45°,∴∠DAE=∠DCE=115°.∵DE⊥DF,E⊥DF,∴∠CDE+∠CDF=90°,∠ADE+∠CDE=90°,∴∠CDF=∠ADE,在△ADE和△CDF中,∵∠DAE=∠DCE,AD=CD,∠ADE=∠CDF,∴△ADE≌△CDF,∴CF=AE,∵BE=2,,AB=1,∴CF=AE=2-1=1;②当点E在AB的延长线上,点F在CA的延长线上,如图2,与①同理可证△ADF≌△BDE,∴AF=BE=2,∵AC=1,∴CF=2+1=1;③当点E在AB的延长线上,点F在AC的延长线上,如图1,连接AD,并延长交EF与H,∵∠5=∠1+∠1,∠6=∠2+∠4,∴∠5+∠6=∠1+∠1+∠2+∠4,∵∠1+∠2=90°,∠5+∠6=90°,∴∠1+∠4=0°,不合题意,此种情况不成立;④当点E在BA的延长线上,点F在CA的延长线上,如图4,同③的方法可说明此种情况也不成立.综上可知,CF的长是1或1.【点睛】本题主要考查了等腰直角三角形的性质,三角形外角的性质,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信息论与编码第八章1
- 校园数据中台技术方案
- 人教部编版四年级语文上册第22课《为中华之崛起而读书》精美课件
- 2024年宁夏客运资格证考试考什么
- 算法设计与分析 课件 5.6.1-动态规划应用-最长公共子序列-问题描述和分析
- 2024年新疆客运资格证需要什么条件
- 2024年武汉申请客运从业资格证2024年试题
- 2024年赣州客运从业资格证培训资料
- 2024年宁夏客运资格证考几科
- 2024-2025学年山东省潍坊市寒亭区统编版六年级上册第一次月考语文试卷(含答案解析)
- 中国大唐集团公司安全生产责任制管理办法
- 气象医疗——日干支断病刘玉山
- 压力容器爆炸应急演练记录
- 武藤系列写真机简明操作手册18页
- 变更通知单(ECN) 模板
- 不同截面钢牛腿设计计算(excel)
- fob与cifcfr 的区别及信用证
- 已解密_彩盒性能技术规范
- 我的引路人中考满分作文600字5篇
- 抗美援越烈士们永垂不朽
- 设备能力指数(CMK)计算表
评论
0/150
提交评论