版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省无锡市阴山中学八年级数学第一学期期末考试试题题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.据广东省旅游局统计显示,年月全省旅游住宿设施接待过夜旅客约人,将用科学计数法表示为()A. B. C. D.2.小颖在做下面的数学作业时,因钢笔漏墨水,不小心将部分字迹污损了,作业过程如下(涂黑部分即为污损部分):如图,OP平分∠AOB,MN∥OB,试说明:OM=MN.理由:因为OP平分∠AOB,所以■,又因为MN∥OB,所以■,故∠1=∠3,所以OM=MN.小颖思考:污损部分应分别是以下四项中的两项:①∠1=∠2;②∠2=∠3;③∠3=∠4;④∠1=∠4.那么她补出来的部分应是()A.①④ B.②③C.①② D.③④3.小王家距上班地点18千米,他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米.他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶()A.26千米 B.27千米 C.28千米 D.30千米4.立方根等于本身的数是()A.-1 B.0 C.±1 D.±1或05.在下列黑体大写英文字母中,不是轴对称图形的是()A. B. C. D.6.现有7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=2b B.a=3b C.a=3.5b D.a=4b7.在平面直角坐标系中,一只电子狗从原点O出发,按向上→向右→向下→向下→向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,则A2018的坐标为()A.(337,1) B.(337,﹣1) C.(673,1) D.(673,﹣1)8.若一次函数与的图象交点坐标为,则解为的方程组是()A. B. C. D.9.如果分式有意义,则x的取值范围是()A.x>3 B.x≠3 C.x<3 D.x>010.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5 B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:11.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30° B.50° C.80° D.100°12.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,若CE=1,AB=4,则下列结论一定正确的个数是()①BC=CD;②BD>CE;③∠CED+∠DFB=2∠EDF;④△DCE与△BDF的周长相等;A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.分解因式:__________.14.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP=______.15.已知一次函数的图像经过点(m,1),则m=____________.16.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD=_____°.17.若式子在实数范围内有意义,则的取值范围是__________.18.如图,顺次连接边长为1的正方形ABCD四边的中点,得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1的中点,得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3,…,按此方法得到的四边形A8B8C8D8的周长为.三、解答题(共78分)19.(8分)如图,,,,,垂足分别为,,,,求的长.20.(8分)如图,AB∥EF,AD平分∠BAC,且∠C=45°,∠CDE=125°,求∠ADF的度数.21.(8分)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲2436乙3348(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?22.(10分)(1)根据所示的程序,求输出D的化简结果;(2)当x与2、3可构成等腰三角形的三边时,求D的值.23.(10分)如图,在中,是边上的一点,,平分,交边于点,连接.(1)求证:;(2)若,,求的度数.24.(10分)我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个关的正方形(如图1),这个矩形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式.称为勾股定理.(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图2),也能验证这个结论,请你帮助小明完成验证的过程;(2)如图3所示,,请你添加适当的辅助线证明结论.25.(12分)定义:如图1,平面上两条直线AB、CD相交于点O,对于平面内任意一点M,点M到直线AB、CD的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O.(1)“距离坐标”为1,0的点有个;(2)如图2,若点M在过点O且与直线AB垂直的直线l上时,点M的“距离坐标”为p,q,且BOD150,请写出p、q的关系式并证明;(3)如图3,点M的“距离坐标”为,且DOB30,求OM的长.26.如图,在中,和的平分线交于点,过点作,交于,交于,若,,试求的值.
参考答案一、选择题(每题4分,共48分)1、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将27700000用科学记数法表示为2.77×107,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、C【解析】∵OP平分∠AOB,∴∠1=∠2,∵MN∥OB,∴∠2=∠3,所以补出来的部分应是:①、②.故选C.点睛:掌握平行线的性质、角平分线的性质.3、B【分析】设小王用自驾车方式上班平均每小时行驶x千米,根据已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的,可列方程求解.【详解】∵小王家距上班地点18千米,设小王用自驾车方式上班平均每小时行驶x千米,∴小王从家到上班地点所需时间t=小时;∵他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,∴他乘公交车从家到上班地点所需时间t=,∵乘公交车方式所用时间是自驾车方式所用时间的,∴=×,解得x=27,经检验x=27是原方程的解,且符合题意.即:小王用自驾车方式上班平均每小时行驶27千米.故答案选:B.【点睛】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.4、D【分析】根据立方根的定义得到立方根等于本身的数.【详解】解:∵立方根是它本身有3个,分别是±1,1.故选:D.【点睛】本题主要考查了立方根的性质.对于特殊的数字要记住,立方根是它本身有3个,分别是±1,1.立方根的性质:(1)正数的立方根是正数.(2)负数的立方根是负数.(3)1的立方根是1.5、C【分析】根据轴对称图形的概念对各个大写字母判断即可得解.【详解】A.“E”是轴对称图形,故本选项不合题意;B.“M”是轴对称图形,故本选项不合题意;C.“N”不是轴对称图形,故本选项符合题意;D.“H”是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6、B【解析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.【详解】解:法1:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.法2:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为x,左上阴影增加的是3bx,右下阴影增加的是ax,因为S不变,∴增加的面积相等,∴3bx=ax,∴a=3b.故选:B.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.7、C【分析】先写出前9个点的坐标,可得点的坐标变化特征:每三个点为一组,循环,进而即可得到答案.【详解】观察点的坐标变化特征可知:A1(0,1),A2(1,1)A3(1,0)A4(1,﹣1)A5(2,﹣1)A6(2,0)A7(2,1)A8(3,1)A9(3,0)…发现规律:每三个点为一组,循环,∵2018÷3=672…2,∴第2018个点是第673组的第二个点,∴A2018的坐标为(673,1).故选:C.【点睛】本题主要考查点的坐标,找出点的坐标的变化规律,是解题的关键.8、C【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此是联立两直线函数解析式所组方程组的解.由此可判断出正确的选项.【详解】解:一次函数与的图象交点坐标为,则是方程组的解,即的解.故选:C【点睛】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.9、B【分析】分式有意义的条件是分母不等于零,从而得到x﹣2≠1.【详解】∵分式有意义,∴x﹣2≠1.解得:x≠2.故选:B【点睛】本题主要考查的是分式有意义的条件,掌握分式有意义时,分式的分母不为零是解题的关键.10、B【分析】A、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B、根据角的比值求出各角的度数,便可判断出三角形的形状;C、根据三角形的内角和为180度,即可计算出∠C的值;D、根据比值结合勾股定理的逆定理即可判断出三角形的形状.【详解】A、因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形,故A选项不符合题意;B、因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B选项符合题意;C、因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C选项不符合题意;D、因为a:b:c=1:2:,所以设a=x,b=2x,c=x,则x2+(x)2=(2x)2,故为直角三角形,故D选项不符合题意,故选B.【点睛】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.11、B【解析】试题分析:利用△ABC≌△DEF,得到对应角相等∠D=∠A=80°,然后在△DEF中依据三角形内角和定理,求出∠F=180﹣∠D﹣∠E=50°故选B.考点:全等三角形的性质.12、D【分析】利用等腰直角三角形的相关性质运用勾股定理以及对应角度的关系来推导对应选项的结论即可.【详解】解:由AB=4可得AC=BC=4,则AE=3=DE,由勾股定理可得CD=2,①正确;BD=4-2,②正确;由∠A=∠EDF=45°,则2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)=135°-∠CDF=135°-(∠DFB+45°)=90°-∠DFB,故∠CED+∠DFB=90°=2∠EDF,③正确;△DCE的周长=CD+CE+DE=2+4,△BDF的周长=BD+BF+DF=BD+AB=4+4-2=4+2,④正确;故正确的选项有4个,故选:D.【点睛】本题主要考查等腰直角三角形的相关性质以及勾股定理的运用,本题涉及的等腰直角三角形、翻折、勾股定理以及边角关系,需要熟练地掌握对应性质以及灵活的运用.二、填空题(每题4分,共24分)13、【分析】先提取公因式3xy,再对余下的多项式利用平方差公式继续分解.【详解】3x3y﹣12xy=3xy(x2﹣4)=3xy(x+2)(x﹣2).故答案为:3xy(x+2)(x﹣2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14、6或1【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=6,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC=1,P、C重合.【详解】解:①当AP=CB时,
∵∠C=∠QAP=90°,
在Rt△ABC与Rt△QPA中,,
∴Rt△ABC≌Rt△QPA(HL),
即;
②当P运动到与C点重合时,AP=AC,
在Rt△ABC与Rt△QPA中,
,∴Rt△QAP≌Rt△BCA(HL),
即,
∴当点P与点C重合时,△ABC才能和△APQ全等.
综上所述,AP=6或1.
故答案为6或1.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.15、-1【分析】把(m,1)代入中,得到关于m的方程,解方程即可.【详解】解:把(m,1)代入中,得
,解得m=-1.
故答案为:-1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题方法一般是代入这个点求解.16、45【解析】解:∵当PC+PD最小时,作出D点关于MN的对称点,正好是A点,连接AC,AC为正方形对角线,根据正方形的性质得出∠PCD=45°.17、a>﹣1【分析】根据二次根式和分式有意义的条件可得a+1>0,再解不等式即可.【详解】由题意得:a+1>0,解得:a>﹣1,故答案为:a>﹣1.【点睛】此题主要考查了二次根式和分式有意义,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.18、【分析】
【详解】顺次连接正方形ABCD四边的中点得正方形A1B1C1D1,则得正方形A1B1C1D1的面积为正方形ABCD面积的一半,即,则周长是原来的;顺次连接正方形A1B1C1D1中点得正方形A2B2C2D2,则正方形A2B2C2D2的面积为正方形A1B1C1D1面积的一半,即,则周长是原来的;顺次连接正方形A2B2C2D2得正方形A3B3C3D3,则正方形A3B3C3D3的面积为正方形A2B2C2D2面积的一半,即,则周长是原来的;…故第n个正方形周长是原来的,以此类推:正方形A8B8C8D8周长是原来的,∵正方形ABCD的边长为1,∴周长为4,∴按此方法得到的四边形A8B8C8D8的周长为,故答案为.三、解答题(共78分)19、1【分析】根据等角的余角相等可得∠DCA=∠EBC,然后利用AAS证出△DCA≌△EBC,从而得出DC=EB,AD=CE=3,即可求出的长.【详解】解:∵,,∴∠ADC=∠CEB=∴∠DCA+∠ECB=90°,∠EBC+∠ECB=90°∴∠DCA=∠EBC在△DCA和△EBC中∴△DCA≌△EBC∴DC=EB,AD=CE=3∵∴DC=CE-DE=1∴=1【点睛】此题考查的是全等三角形的判定及性质,掌握利用AAS判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.20、∠ADF=40°.【分析】根据外角的性质得到∠CFD=∠CDE﹣∠C=125°﹣45°=80°,根据平行线的性质得到∠BAC=∠DFC=80°,根据角平分线的定义得到∠FAD=∠BAC=40°,于是得到结论.【详解】解:∵∠CDE=125°,∠C=45°,∴∠CFD=∠CDE﹣∠C=125°﹣45°=80°,∵AB∥EF,∴∠BAC=∠DFC=80°,∵AD平分∠BAC,∴∠FAD=∠BAC=40°,∴∠ADF=∠DFC﹣∠DAF=40°.【点睛】本题考查了平行线的性质,三角形的外角的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.21、(1)商场购进甲种矿泉水300箱,购进乙种矿泉水200箱(2)该商场共获得利润6600元【详解】(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意得:,解得:,答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱;(2)300×(36−24)+200×(48−33)=3600+3000=6600(元),答:该商场共获得利润6600元.22、(1)D=;(2)D=1.【分析】(1)根据运算程序列出算式,先对括号内的分式进行通分相加,把除法转化为乘法,计算乘法即可化简;(2)先求出x的值,然后代入计算,即可得到答案.【详解】解:(1)D====;(2)由题意得,x=2或x=1,当x=2时,能使原分式中的分母为0,分式无意义,∴当x=1时,则D=;【点睛】此题主要考查了方程解的定义和分式的运算,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.23、(1)见解析;(2)【分析】(1)由角平分线定义得出,由证明即可;(2)由三角形内角和定理得出,由角平分线定义得出,在中,由三角形内角和定理即可得出答案.【详解】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 促销活动广告语
- 企业开展“强素质树形象”活动情况小结
- 中秋节日的慰问信(17篇)
- 中学秋季开学典礼活动主持词范文(8篇)
- 中秋佳节的活动主持词范文(5篇)
- DB12-T 1071-2021 氟骨症现症病人随访管理规范
- 影响粉末静电喷涂质量的诸多因素
- 耐火材料 高温耐压强度试验方法 征求意见稿
- 戈雅课件教学课件
- 八年级上学期语文第二次月考考试卷
- 电力电缆线路 电缆排管敷设(建筑电气施工)
- 综合实践活动课《早餐与健康》优质课件
- 爆破安全工作总结
- 物业保安、保洁项目投标书
- 眼视光学:专业职业生涯规划
- 预防母婴传播培训
- 房屋改造方案可行性分析报告
- 2024年电子维修培训资料
- 水利工程测量的内容和任务
- 项目风险识别与控制-年度总结
- 《决策心理学》课件
评论
0/150
提交评论