2025届重庆市綦江县名校数学八上期末达标测试试题含解析_第1页
2025届重庆市綦江县名校数学八上期末达标测试试题含解析_第2页
2025届重庆市綦江县名校数学八上期末达标测试试题含解析_第3页
2025届重庆市綦江县名校数学八上期末达标测试试题含解析_第4页
2025届重庆市綦江县名校数学八上期末达标测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届重庆市綦江县名校数学八上期末达标测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD2.在平面直角坐标系中,点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列各式是分式的是()A. B. C. D.4.计算的结果是()A. B.5 C. D.-55.在3.14;;;π;这五个数中,无理数有()A.0个 B.1个 C.2个 D.3个6.在平面直角坐标系中,如果点A的坐标为(﹣1,3),那么点A一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,已知由16个边长为1的小正方形拼成的图案中,有五条线段PA、PB、PC、PD、PE,其中长度是有理数的有()A.1条 B.2条 C.3条 D.4条8.设A=(x−2)(x−3),B=(x−1)(x−4),则A、B的关系为()A.A>B B.A<B C.A=B D.无法确定9.下列各数组中,不是勾股数的是()A.5,12,13 B.7,24,25C.8,12,15 D.3k,4k,5k(k为正整数)10.如图所示的正方形网格中,网格线的交点称为格点.已知、是两格点,如果也是图中的格点,且使得为等腰三角形,则点的个数是()A.5 B.6 C.7 D.8二、填空题(每小题3分,共24分)11.分解因式:ab2﹣4ab+4a=.12.如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠An的度数为.13.如果一个三角形的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,那么这个三角形一定是______.14.不等式组的解为,则的取值范围是______.15.将0.0021用科学记数法表示为___________.16.满足的整数的和是__________.17.现有一个长方形纸片,其中.如图所示,折叠纸片,使点落在边上的处,折痕为,当点在上移动时,折痕的端点、也随之移动.若限定、分别在、边上移动,则点在边上可移动的最大距离为_________.18.分解因式:x3﹣2x2+x=______.三、解答题(共66分)19.(10分)老师在黑板上书写了一个代数式的正确计算结果,随后用字母A代替了原代数式的一部分,如下:(1)求代数式A,并将其化简;(2)原代数式的值能等于吗?请说明理由.20.(6分)利用我们学过的知识,可以推导出下面这个形式优美的等式:.该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐美、简洁美.(1)请你检验这个等式的正确性;(2)猜想:[].(3)灵活运用上面发现的规律计算:若,,,求的值.21.(6分)化简:2x2+(﹣2x+3y)(﹣2x﹣3y)﹣(x﹣3y)2,其中x=﹣2,y=﹣1.22.(8分)如图1,是直角三角形,,的角平分线与的垂直平分线相交于点.(1)如图2,若点正好落在边上.①求的度数;②证明:.(2)如图3,若点满足、、共线.线段、、之间是否满足,若满足请给出证明;若不满足,请说明理由.23.(8分)如图,在等边中,分别为的中点,延长至点,使,连结和.(1)求证:(2)猜想:的面积与四边形的面积的关系,并说明理由.24.(8分)如图,AE=AD,∠ABE=∠ACD,BE与CD相交于O.(1)如图1,求证:AB=AC;(2)如图2,连接BC、AO,请直接写出图2中所有的全等三角形(除△ABE≌△ACD外).25.(10分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x;y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?26.(10分)解分式方程.

参考答案一、选择题(每小题3分,共30分)1、D【解析】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.2、B【分析】根据各象限内点的坐标特征解答.第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【详解】点在第二象限.故选B.【点睛】此题考查象限及点的坐标的有关性质,解题关键在于掌握其特征.3、D【分析】由分式的定义分别进行判断,即可得到答案.【详解】解:根据分式的定义,则是分式;故选:D.【点睛】本题考查了分式的定义,解题的关键是掌握分式的定义进行判断.4、B【解析】根据二次根式的性质进行化简,即可得到答案.【详解】解:,故选:B.【点睛】本题考查了二次根式的性质,解题的关键是熟练掌握二次根式的性质进行计算.5、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:3.14是有限小数,属于有理数;是分数,属于有理数.无理数有;π;共3个.故选:D.【点睛】本题考查实数的分类,掌握有理数及无理数的概念是本题的解题关键.6、B【分析】根据平面直角坐标系中点P(a,b),①第一象限:a>1,b>1;②第二象限:a<1,b>1;③第三象限:a<1,b<1;④第四象限:a>1,b<1;据此求解可得.【详解】解:∵点A的横坐标为负数、纵坐标为正数,∴点A一定在第二象限.故选:B.【点睛】本题主要考查坐标确定位置,解题的关键是掌握①第一象限:a>1,b>1;②第二象限:a<1,b>1;③第三象限:a<1,b<1;④第四象限:a>1,b<1.7、B【分析】先根据勾股定理算出各条线段的长,即可判断.【详解】,,,,,、的长度均是有理数,故选B.考点:本题考查的是勾股定理点评:解答本题的关键是熟练掌握网格的特征,灵活选用恰当的直角三角形使用勾股定理.8、A【解析】利用作差法进行解答即可.【详解】∵A-B=x-2x-3-(x-1)(x-4)=x2-5x+6-(x2-5x+4)=x2-5x+6-x2+5x-4=2∴A>B.故选A.【点睛】本题考查了整式的混合运算,熟练运用作差法比较大小是解决问题的关键.9、C【分析】验证两个较小数的平方和是否等于最大数的平方即可.【详解】解:A、52+122=132,是勾股数,故错误;B、72+242=252,是勾股数,故错误;C、82+122≠152,不是勾股数,故正确;D、(3k)2+(4k)2=(5k)2,是勾股数,故错误.故选:C.【点睛】本题考查了勾股数的定义:可以构成一个直角三角形三边的一组正整数.10、D【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【详解】解:如图,分情况讨论:

①AB为等腰△ABC的底边时,符合条件的C点有4个;

②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.

故选:D.【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形.分类讨论思想是数学解题中很重要的解题思想.二、填空题(每小题3分,共24分)11、a(b﹣1)1.【解析】ab1﹣4ab+4a=a(b1﹣4b+4)﹣﹣(提取公因式)=a(b﹣1)1.﹣﹣(完全平方公式)故答案为a(b﹣1)1.12、.【解析】试题解析:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A==80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1==40°;同理可得,∠DA3A2=20°,∠EA4A3=10°,∴∠An=.考点:1.等腰三角形的性质;2.三角形外角的性质.13、直角三角形【解析】由已知可得(a-3)2+(b-4)2+(c-5)2=0,求出a,b,c,再根据勾股定理逆定理可得.【详解】∵a2+b2+c2+50=6a+8b+10c

∴a2+b2+c2-6a-8b-10c+50=0

即a2-6a+9+b2-8b+16+c2-10c+25=0

∴(a-3)2+(b-4)2+(c-5)2=0

∴a=3,b=4,c=5

∵a2+b2=c2故答案为:直角三角形【点睛】掌握非负数性质和勾股定理逆定理.14、【分析】根据不等式组的公共解集即可确定a的取值范围.【详解】由不等式组的解为,可得.

故答案为:.【点睛】本题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.15、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,其中,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】,故答案为:.【点睛】科学记数法表示数时,要注意形式中,的取值范围,要求,而且的值和原数左边起第一个不为零的数字前面的0的个数一样.16、1【分析】根据估算无理数的大小的方法确定和的范围,可知满足条件的整数的情况.【详解】∵,,∴,,∴,满足条件的整数为:2,3,4,5,∴满足条件的整数的和为2+3+4+5=1.故答案为:1.【点睛】本题主要考查估算无理数的大小的知识点,解题关键是确定无理数的整数部分,比较简单.17、1【解析】根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.【详解】①当P与B重合时,BA′=BA=6,CA′=BC−BA′=10−6=1,②当Q与D重合时,由勾股定理,得CA′==8,CA′最远是8,CA′最近是1,点A′在BC边上可移动的最大距离为8−1=1,故答案为1.【点睛】本题考查了翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.18、x(x-1)2.【解析】由题意得,x3﹣2x2+x=x(x﹣1)2三、解答题(共66分)19、(1)A=;(2)不能,理由见解析.【解析】(1)根据题意得出A的表达式,再根据分式混合运算的法则进行计算即可;

(2)令原代数式的值为-1,求出x的值,代入代数式中的式子进行验证即可.【详解】(1),(2)不能,理由:若能使原代数式的值能等于﹣1,则,即x=0,但是,当x=0时,原代数式中的除数,原代数式无意义.所以原代数式的值不能等于﹣1.【点睛】考查分式的化简求值,掌握分式的运算法则是解题的关键.20、(1)证明见解析;(2);(3)【分析】(1)右边利用完全平方公式化简,去括号合并即可验证;

(2)猜想:;(3)根据,将原式变形,计算即可得到结果.【详解】(1)右边左边,故等式成立;(2)右边左边,∴猜想成立,故答案为:;(3)根据(1)(2)的规律,猜想:,右边左边,∴猜想成立;∵,∴.【点睛】本题考查了完全平方公式,熟练掌握题中已知等式的灵活运用是解本题的关键.21、5x3+6xy﹣18y3,3【分析】先算乘方和乘法,再合并同类项,最后代入求值.【详解】原式=3x3+4x3﹣9y3﹣x3+6xy﹣9y3=5x3+6xy﹣18y3,当x=﹣3,y=﹣1时,原式=5×4+6×3﹣18×1=3.【点睛】本题考查了整式的混合运算及乘法公式.可利用平方差公式计算(-3x+3y)(-3x-3y),利用完全平方公式计算(x-3y)3..22、(1)①;②见解析;(2)满足,证明见解析【分析】(1)①由角平分线与垂直平分线的性质证明:,再利用三角形的内角和定理可得答案;②先利用角平分线的性质证明:,再利用证明从而可得结论;(2)过点作于点,证明:,再证明,可得,再利用线段的和差可得答案.【详解】(1)①解:∵平分∴又∵是的垂直平分线∴∴,∴又∵∴;②证明:∵平分,且,∴,在中,∴,;(2)解:线段、、之间满足,证明如下:过点作于点,∵是的垂直平分线,且、、共线∴也是的垂直平分线∴又∴是等腰直角三角形.∴∴是等腰直角三角形.∴∵平分,且,∴∴,在和中∴∴,∴.【点睛】本题考查的是三角形的内角和定理,角平分线的性质,垂直平分线的性质,直角三角形全等的判定与性质,含的直角三角形的性质,掌握以上知识是解题的关键.23、(1)见解析;(2)相等,理由见解析.【分析】(1)直接利用三角形中位线定理得出DE∥BC,且DE=BC,再利用平行四边形的判定方法得出答案;

(2)分别过点A,D,作AM⊥DE,DN⊥BC,根据等底等高的三角形面积相等求得S△ADE=S△ECF,再根据S△ADE+S四边形BDEC=S△ECF+S四边形BDEC可得出结果.【详解】(1)证明:∵D,E分别为AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC.∵CF=BC,∴DE∥CF,DE=CF,∴四边形DEFC为平行四边形,∴CD=EF;(2)解:相等.理由如下:分别过点A,D,作AM⊥DE,DN⊥BC,则∠AMD=∠DNB=90°,∵DE∥BC,∴∠ADM=∠DBN.∵AD=DB,∴△ADM≌△DBN(AAS),∴AM=DN.又∵DE=CF,∴S△ADE=S△ECF(等底等高的三角形面积相等).∴S△ADE+S四边形BDEC=S△ECF+S四边形BDEC,∴△ABC的面积等于四边形BDEF的面积.【点睛】此题主要考查了等边三角形的性质以及平行四边形的判定与性质、三角形中位线定理等知识,正确掌握相关性质和判定方法是解题关键.24、(1)见解析;(2)△BDC≌△CEB,△DOB≌△EOC,△AOB≌△AOC,△ADO≌△AEO【分析】(1)根据“AAS”证明△ABE≌△ACD,从而得到AB=AC;(2)根据全等三角形的判定方法可得到4对全等三角形.【详解】(1)证明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC;(2)解:∵AD=AE,∴BD=CE,而△ABE≌△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论