台州市重点中学2025届八年级数学第一学期期末考试试题含解析_第1页
台州市重点中学2025届八年级数学第一学期期末考试试题含解析_第2页
台州市重点中学2025届八年级数学第一学期期末考试试题含解析_第3页
台州市重点中学2025届八年级数学第一学期期末考试试题含解析_第4页
台州市重点中学2025届八年级数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

台州市重点中学2025届八年级数学第一学期期末考试试题试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在,,,,中,分式的个数是()A.2 B.3 C.4 D.52.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.2.8 B. C.2.4 D.3.53.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=7,点E在边BC上,并且CE=2,点F为边AC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是()A.0.5 B.1 C.2 D.2.54.若(x+a)(x﹣2)=x2+bx﹣6,则a、b的值是()A.a=3,b=5 B.a=3,b=1 C.a=﹣3,b=﹣1 D.a=﹣3,b=﹣55.下列标志中,可以看作是轴对称图形的是()A. B. C. D.6.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是则成绩最稳定的是().A.甲 B.乙 C.丙 D.丁7.计算:A.0 B.1 C. D.396018.下列图形中有稳定性的是()A.平行四边形 B.长方形 C.正方形 D.直角三角形9.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2 C.(m-n)2 D.m2-n210.已知,则的值是()A. B. C.2 D.-211.无论取什么数,总有意义的分式是()A. B. C. D.12.以下四组数中的三个数作为边长,不能构成直角三角形的是()A.1,, B.5,12,13 C.32,42,52 D.8,15,17.二、填空题(每题4分,共24分)13.关于的一次函数,其中为常数且.①当时,此函数为正比例函数.②无论取何值,此函数图象必经过.③若函数图象经过,(,为常数),则.④无论取何值,此函数图象都不可能同时经过第二、三、四象限.上述结论中正确的序号有________.14.如图,已知方格纸中是4个相同的小正方形,则的度数为______.15.下面是一个按某种规律排列的数表:第1行1第2行2第3行第4行……那么第n(,且n是整数)行的第2个数是________.(用含n的代数式表示)16.计算=________________.17.若函数y=kx+3的图象经过点(3,6),则k=_____.18.一列高铁列车从甲地匀速驶往乙地,一列特快列车从乙地匀速驶往甲地,两车同时出发,设特快列车行驶的时间为x(单位:时),特快列车与高铁列车之间的距离为y(单位:千米),y与x之间的函数关系如图所示,则图中线段CD所表示的y与x之间的函数关系式是_____.三、解答题(共78分)19.(8分)在等边三角形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,小明和小慧对这个图形展开如下研究:问题初探:(1)如图1,小明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为______;问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.成果运用(3)若边长AB=4,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L的变化范围是______.20.(8分)在边长为的小正方形组成的正方形网格中建立如图所示的平面直角坐标系,已知格点三角形(三角形的三个顶点都在小正方形的顶点上)(1)写出的面积;(2)画出关于轴对称的;(3)写出点及其对称点的坐标.21.(8分)如图,点B,F,C,E在一条直线上,∠A=∠D,AC=DF,且AC∥DF.求证:△ABC≌△DEF.22.(10分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽取了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中______,并补全条形图;(2)样本数据的平均数是______,众数是______,中位数是______;(3)该区体育中考选报引体向上的男生共有1200人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?23.(10分)如图,已知,点、在线段上,与交于点,且,.求证:(1).(2)若,求证:平分.24.(10分)计算及解方程组:(1)(2)(3)解方程组:25.(12分)在Rt△ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD于E,BF∥AC交CE的延长线于F.(1)求证:△ACD≌△CBF;(2)求证:AB垂直平分DF.26.阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解析:由分母为,可设则对应任意x,上述等式均成立,,,..这样,分式被拆分成了一个整式与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式.(2)当时,直接写出________,的最小值为________.

参考答案一、选择题(每题4分,共48分)1、A【解析】根据分式的定义即可得出答案.【详解】根据分式的定义可知是分式的为:、共2个,故答案选择A.【点睛】本题考查的主要是分式的定义:①形如的式子,A、B都是整式,且B中含有字母.2、B【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH的长.【详解】解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,,故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.3、A【分析】如图所示:当PE⊥AB.由翻折的性质和直角三角形的性质即可得到即可.【详解】如图所示:当PE⊥AB,点P到边AB距离的值最小.由翻折的性质可知:PE=EC=1.∵DE⊥AB,∴∠PDB=90°.∵∠B=30°,∴DE=BE=(7﹣1)=1.2,∴点P到边AB距离的最小值是1.2﹣1=0.2.故选:A.【点睛】此题参考翻折变换(折叠问题),直角三角形的性质,熟练掌握折叠的性质是解题的关键.4、B【分析】先把方程的左边化为与右边相同的形式,再分别令其一次项系数与常数项分别相等即可求出a、b的值.【详解】解:原方程可化为:x2+(a﹣2)x﹣2a=x2+bx﹣6,故,解得.故选:B.【点睛】本题考查多项式乘法,掌握多项式乘多项式的计算法则是本题的解题关键.5、D【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;

B、不是轴对称图形,是中心对称图形,不符合题意;

C、不是轴对称图形,是中心对称图形,不符合题意;

D、是轴对称图形,符合题意.

故选D.【点睛】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.6、D【分析】根据方差是用来衡量一组数据波动大小的量,故由甲、乙、丙、丁的方差可作出判断.【详解】解:由于S丁2<S丙2<S甲2<S乙2,则成绩较稳定的是丁.

故选:D【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7、B【解析】直接利用完全平方公式分解因式得出即可.【详解】解:1002-2×100×99+992=(100-99)2=1.故选:B.【点睛】此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.8、D【分析】根据三角形具有稳定性解答.【详解】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:D.【点睛】本题考查了三角形具有稳定性,是基础题,需熟记.9、C【详解】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.故选C.10、D【分析】先把已知的式子变形为,然后整体代入所求式子约分即得答案.【详解】解:∵,∴,∴.故选:D.【点睛】本题考查了分式的通分与约分,属于常考题目,掌握解答的方法是关键.11、B【分析】根据分式有意义的条件,分别进行判断,即可得到答案.【详解】解:A、当时,无意义,故A错误;B、∵,则总有意义,故B正确;C、当时,无意义,故C错误;D、当时,无意义,故D错误;故选:B.【点睛】本题考查了分式有意义的条件,分式无意义的条件,解题的关键是熟练掌握分母不等于0,则分式有意义.12、C【解析】分别求出两小边的平方和和长边的平方,看看是否相等即可.【详解】A、∵12+()2=()2,∴以1,,为边能组成直角三角形,故本选项不符合题意;B、∵52+122=132,∴以5、12、13为边能组成直角三角形,故本选项不符合题意;C、∵92+162≠52,∴以32,42,52为边不能组成直角三角形,故本选项符合题意;D、∵82+152=172,∴8、15、17为边能组成直角三角形,故本选项不符合题意;故选C.【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键,注意:如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形二、填空题(每题4分,共24分)13、②③④【分析】根据一次函数知识依次判断各项即可.【详解】①当k=0时,则,为一次函数,故①错误;②整理得:,∴x=2时,y=5,∴此函数图象必经过,故②正确;③把,代入中,得:,②-①得:,解得:,故③正确;④当k+2<0时,即k<-2,则-2k+1>5,∴此函数图象都不可能同时经过第二、三、四象限,故④正确;故答案为:②③④.【点睛】本题是对一次函数知识的考查,熟练掌握一次函数的性质定理是解决本题的关键.14、90º【分析】首先证明三角形全等,根据全等三角形的性质可得对应角相等,再由余角的定义和等量代换可得∠1与∠2的和为90°.【详解】解:如图,根据方格纸的性质,在△ABD和△CBE中,∴△ABD≌△CBE(SAS),∴∠1=∠BAD,∵∠BAD+∠2=90°,∴=90°.故答案为:90°.【点睛】此题主要考查了全等图形,关键是掌握全等三角形的判定和性质.15、【分析】根据每一行的最后一个数的被开方数是所在的行数的平方,写出第行的最后一个数的平方是,据此可写出答案.【详解】第2行最后一个数字是:,第3行最后一个数字是:,第4行最后一个数字是:,第行最后一个数字是:,第行第一个数字是:,第行第二个数字是:,故答案为:【点睛】本题考查了规律型-数字变化,解题的关键是确定每一行最后一个数字.16、【分析】在进行分式乘方运算时,先确定运算结果的符号,负数的偶数次方为正,而奇数次方为负,同时要注意运算顺序,先乘方,后乘除.【详解】.故答案是:xy2【点睛】本题考查了负整数指数幂的运算,分式的乘除法,分式的运算首先要分清运算顺序,在这个题目中,首先进行乘方运算,然后统一成乘法运算,最后进行约分运算.17、1【解析】∵函数y=kx+3的图象经过点(3,6),∴,解得:k=1.故答案为:1.18、y=100x【分析】由函数图象可以直接得出甲、乙两地之间的距离为1200千米和特快列车走完全程的时间,就可以求出特快列车的速度,进而求出高铁列车的速度而得出C的坐标,由待定系数法求出结论.【详解】解:由函数图象得:甲、乙两地之间的距离为1200千米,特快列车速度为:1200÷12=100(千米/时),高铁列车与特快列车的速度和为1200÷3=400(千米/时),高铁列车的速度为:400﹣100=300(千米/时),∴高铁列车走完全程时间为1200÷300=4(小时),∴高铁列车到达时是在它俩相遇之后的1小时后,此时高铁列车与特快列车相距400千米,∴C(4,400).设线段CD的解析式为y=kx+b(k≠0,k、b为常数),把(4,400),(12,1200)代入y=kx+b中,有解得∴y=100x.故答案为:y=100x【点睛】本题主要考查一次函数的应用及待定系数法,能够读懂图象,掌握待定系数法是解题的关键.三、解答题(共78分)19、(1);(2)BE与CF的和始终不变,见解析;(3)【解析】(1)先利用等边三角形判断出BD=CD=AB,进而判断出BE=BD,再判断出∠DFC=90°,得出CF=CD,即可得出结论;(2)①构造出△EDG≌△FDH(ASA),得出DE=DF,即可得出结论;②由(1)知,BG+CH=AB,由①知,△EDG≌△FDH(ASA),得出EG=FH,即可得出结论;(3)由(1)(2)判断出L=2DE+6,再判断出DE⊥AB时,L最小,点F和点C重合时,DE最大,即可得出结论.【详解】解:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC,∵点D是BC的中点,∴BD=CD=BC=AB,∵∠DEB=90°,∴∠BDE=90°-∠B=30°,在Rt△BDE中,BE=BD,∵∠EDF=120°,∠BDE=30°,∴∠CDF=180°-∠BDE-∠EDF=30°,∵∠C=60°,∴∠DFC=90°,在Rt△CFD中,CF=CD,∴BE+CF=BD+CD=BC=AB,∵BE+CF=nAB,∴n=,故答案为;(2)如图2①过点D作DG⊥AB于G,DH⊥AC于H,∴∠DGB=∠AGD=∠CFD=∠AHF=90°,∵△ABC是等边三角形,∴∠A=60°,∴∠GDH=360°-∠AGD-∠AHD-∠A=120°,∵∠EDF=120°,∴∠EDG=∠FDH,∵△ABC是等边三角形,且D是BC的中点,∴∠BAD=∠CAD,∵DG⊥AB,DH⊥AC,∴DG=DH,在△EDG和△FDH中,,∴△EDG≌△FDH(ASA),∴DE=DF,即:DE始终等于DF;②同(1)的方法得,BG+CH=AB,由①知,△EDG≌△FDH(ASA),∴EG=FH,∴BE+CF=BG-EG+CH+FH=BG+CH=AB,∴BE与CF的和始终不变(3)由(2)知,DE=DF,BE+CF=AB,∵AB=4,∴BE+CF=2,∴四边形DEAF的周长为L=DE+EA+AF+FD=DE+AB-BE+AC-CF+DF=DE+AB-BE+AB+DE=2DE+2AB-(BE+CF)=2DE+2×4-2=2DE+6,∴DE最大时,L最大,DE最小时,L最小,当DE⊥AB时,DE最小,由(1)知,BG=BD=1,∴DE最小=BG=,∴L最小=2+6,当点F和点C重合时,DE最大,此时,∠BDE=180°-∠EDF=120°=60°,∵∠B=60°,∴∠B=∠BDE=∠BED=60°,∴△BDE是等边三角形,∴DE=BD=AB=2,即:L最大=2×2+6=1,∴周长L的变化范围是2≤L≤1,故答案为2≤L≤1.【点睛】此题是四边形综合题,主要考查了等边三角形的性质,含30度角的直角三角形的性质,角平分线定理,全等三角形的判定和性质,旋转的性质,构造出全等三角形是解本题的关键.20、(1)7;(2)见解析;(3)A(-1,3),A1(1,3).【分析】(1)过点B作BD∥x轴交AC于点D,由图可知BD=2,AC=7,AC⊥x轴,从而得出BD⊥AC,然后根据三角形的面积公式求面积即可;(2)找到A、B、C关于y轴的对称点,然后连接、、即可;(3)由平面直角坐标系即可得出结论.【详解】解:(1)过点B作BD∥x轴交AC于点D,由图可知BD=2,AC=7,AC⊥x轴∴BD⊥AC∴S△ABC=(2)找到A、B、C关于y轴的对称点,然后连接、、,如下图所示:即为所求.(3)由平面直角坐标系可知:点A(-1,3),点A1(1,3).【点睛】此题考查的是求平角直角坐标系中三角形的面积、画已知三角形关于y轴的对称图形和根据坐标系写点的坐标,掌握三角形的面积公式和关于y轴对称的图形的画法是解决此题的关键.21、见解析;【解析】首先根据平行线的性质可得∠ACB=∠DFE,再根据ASA定理证明△ABC≌△DEF即可.【详解】证明:∵AC∥DF,∴∠ACB=∠DFE.在△ABC和△DEF中,∠A=∠D,AC=DF,∠ACB=∠DFE,∴△ABC≌△DEF.(ASA)【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22、(1)25%,图形见解析;(2)5.3,5,5;(3)540名【分析】(1)用1减去其他人数所占的百分比即可得到a的值,再计算出样本总数,用样本总数×a的值即可得出“引体向上达6个”的人数;(2)根据平均数、众数与中位数的定义求解即可;(3)先求出样本中得满分的学生所占的百分比,再乘以1200即可.【详解】(1)由题意可得,,样本总数为:,做6个的学生数是,条形统计图补充如下:(2)由补全的条形图可知,样本数据的平均数,∵引体向上5个的学生有60人,人数最多,∴众数是5,∵共200名同学,排序后第100名与第101名同学的成绩都是5个,∴中位数为;(3)该区体育中考中选报引体向上的男生能获得满分的有:(名),即该区体育中考中选报引体向上的男生能获得满分的有540名.【点睛】本题主要考查了众数,用样本估计总体,扇形统计图,条形统计图,中位数,平均数,掌握众数,用样本估计总体,扇形统计图,条形统计图,中位数,平均数是解题的关键.23、(1)详见解析;(2)详见解析【分析】(1)由于△ABF与△DCE是直角三角形,根据直角三角形全等的判定和性质即可证明;(2)先根据三角形全等的性质得出∠AFB=∠DEC,再根据等腰三角形的性质得出结论.【详解】证明:(1),,即,,与都为直角三角形,在和中,,:(2)(已证),,,,平分.【点睛】此题考查了直角三角形全等的判定和性质及等腰三角形的性质,解题关键是由BE=CF通过等量代换得到BF=CE.24、(1);(2);(3).【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可;(2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可;(3)首先将第二个方程化简,然后利用加减消元法即可求解.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论