版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省娄底市名校八年级数学第一学期期末经典模拟试题题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列长度的三条线段不能构成直角三角形的是()A.3、4、5 B.5、12、13 C.2、4、 D.6、7、82.如图,为等边三形内的一点,,将线段以点为旋转中心逆时针旋转60°得到线段,下列结论:①点与点的距离为5;②;③可以由绕点进时针旋转60°得到;④点到的距离为3;⑤,其中正确的有()A.2个 B.3个 C.4个 D.5个3.由四舍五入得到的近似数,精确到()A.万位 B.百位 C.百分位 D.个位4.根据下列条件作图,不能作出唯一三角形的是()A.已知两边和它们的夹角 B.已知两边和其中一条边所对的角C.已知两角和它们的夹边 D.已知两角和其中一个角所对的边5.(2016河南2题)某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为()A. B. C. D.6.如图,在四个“米”字格的正方形涂上阴影,其中是轴对称图形的是()A. B. C. D.7.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:,,3,,,分别对应下列六个字:益,爱,我,数,学,广,现将因式分解,结果呈现的密码信息可能是()A.我爱学 B.爱广益 C.我爱广益 D.广益数学8.化简式子的结果为()A. B. C. D.9.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为()A.72° B.45° C.36° D.30°10.下列各式由左到右的变形中,属于分解因式的是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,AB∥CD,DE∥CB,∠B=35°,则∠D=_____°.12.如图,直线与坐标轴分别交于点,与直线交于点是线段上的动点,连接,若是等腰三角形,则的长为___________.13.已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=___________cm.14.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7cm,则正方形A,B,C,D的面积之和为___________cm1.15.如图,正方形ABCD,以CD为边向正方形内作等边△DEC,则∠EAB=______________º.16.要使分式有意义,则x应满足条件____.17.如图,点为线段的中点,,则是_______________三角形.18.如图,把绕点逆时针旋转,得到,点恰好落在边上,连接,则__________度.三、解答题(共66分)19.(10分)如图,已知直线y=kx+b交x轴于点A,交y轴于点B,直线y=2x﹣4交x轴于点D,与直线AB相交于点C(3,2).(1)根据图象,写出关于x的不等式2x﹣4>kx+b的解集;(2)若点A的坐标为(5,0),求直线AB的解析式;(3)在(2)的条件下,求四边形BODC的面积.20.(6分)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“湘一四边形”.(1)已知:如图1,四边形是“湘一四边形”,,,.则,,若,,则(直接写答案)(2)已知:在“湘一四边形”中,,,,.求对角线的长(请画图求解),(3)如图(2)所示,在四边形中,若,当时,此时四边形是否是“湘一四边形”,若是,请说明理由:若不是,请进一步判断它的形状,并给出证明.21.(6分)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生已知用300元购买甲种文具的个数是用50元购买乙种文具个数的2倍,购买1个甲种文具比购买1个乙种文具多花费10元.(1)求购买一个甲种文具、一个乙种文具各需多少元;(2)若学校计划购买这两种文具共120个,投入资金不多于1000元,且甲种文具至少购买36个,求有多少种购买方案.22.(8分)如图1,△ABC中,AD是∠BAC的角平分线,AE⊥BC于点E.(1)若∠C=80°,∠B=40°,求∠DAE的度数;(2)若∠C>∠B,试说明∠DAE=(∠C-∠B);(3)如图2,若将点A在AD上移动到A′处,A′E⊥BC于点E.此时∠DAE变成∠DA′E,请直接回答:(2)中的结论还正确吗?23.(8分)如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,求∠BFD的度数.24.(8分)如图,已知直线与直线AC交于点A,与轴交于点B,且直线AC过点和点,连接BD.(1)求直线AC的解析式.(2)求交点A的坐标,并求出的面积.(3)在x轴上是否存在一点P,使得周长最小?若存在,求出点P的坐标;若不存在,请说明理由.25.(10分)某服装店到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,已知用2000元购进A种服装的数量是用750元购进B种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元?(2)若A品牌服装每套售价为130元,B品牌服装每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,要使总利润不少于1200元,则最少购进A品牌的服装多少套?26.(10分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划最多用41万元购买8台这两种型号的机器人,则该公司该如何购买,才能使得每小时的分拣量最大?
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】A、∵32+42=52,∴此三角形是直角三角形,不符合题意;B、∵52+122=132,∴此三角形是直角三角形,不符合题意;C、∵22+()2=42,∴此三角形是直角三角形,不符合题意;D、∵62+72≠82,∴此三角形不是直角三角形,符合题意;故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2、B【分析】连结DD′,根据旋转的性质得AD=AD′,∠DAD′=60°,可判断△ADD′为等边三角形,则DD′=5,可对①进行判断;由△ABC为等边三角形得到AB=AC,∠BAC=60°,则把△ABD逆时针旋转60°后,AB与AC重合,AD与AD′重合,于是可对③进行判断;再根据勾股定理的逆定理得到△DD′C为直角三角形,则可对②④进行判断;由于S四边形ADCD′=S△ADD′+S△D′DC,利用等边三角形的面积公式和直角三角形面积公式计算后可对⑤进行判断.【详解】解:连结DD′,如图,∵线段AD以点A为旋转中心逆时针旋转60°得到线段AD′,∴AD=AD′,∠DAD′=60°,∴△ADD′为等边三角形,∴DD′=5,所以①正确;∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∴把△ABD逆时针旋转60°后,AB与AC重合,AD与AD′重合,∴△ACD′可以由△ABD绕点A逆时针旋转60°得到,所以③正确;∴D′C=DB=4,∵DC=3,在△DD′C中,∵32+42=52,∴DC2+D′C2=DD′2,∴△DD′C为直角三角形,∴∠DCD′=90°,∵△ADD′为等边三角形,∴∠ADD′=60°,∴∠ADC≠150°,所以②错误;∵∠DCD′=90°,∴DC⊥CD′,∴点D到CD′的距离为3,所以④正确;∵S四边形ADCD′=S△ADD′+S△D′DC=,所以⑤错误.故选:B.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线的夹角等于旋转角.也考查了等边三角形的判定与性质以及勾股定理的逆定理.3、B【分析】由于=80100,观察数字1所在的数位即可求得答案.【详解】解:∵=80100,数字1在百位上,∴近似数精确到百位,故选B.【点睛】此题主要考查了近似数和有效数字,熟记概念是解题的关键.4、B【分析】根据全等三角形的判定方法得到不能作出唯一三角形的选项即可.【详解】解:A、根据SAS可得能作出唯一三角形;
B、已知两边及其中一边所对的角不能作出唯一的三角形;
C、根据ASA可得能作出唯一三角形;
D、根据AAS可得能作出唯一三角形.
故选B.【点睛】本题考查全等三角形的判定定理的应用,全等三角形的判定定理有SAS,ASA,AAS,SSS.注意SSA不能判定两三角形全等,也不能作出唯一的三角形.5、A【详解】略6、D【分析】根据轴对称图形的定义,逐一判断选项,即可得到答案.【详解】A是中心对称图形,不是轴对称图形,B不是轴对称图形,C是中心对称图形,不是轴对称图形,D是轴对称图形,故选D.【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.7、C【分析】先运用提公因式法,再运用公式法进行因式分解即可.【详解】因为==所以结果呈现的密码信息可能是:我爱广益.故选:C【点睛】考核知识点:因式分解.掌握提公因式法和套用平方差公式是关键.8、D【分析】根据二次根式有意义的条件即可求出a的取值范围,然后根据二次根式的除法公式和分母有理化化简即可.【详解】解:,即,故选:D.【点睛】此题考查的是二次根式的化简,掌握二次根式有意义的条件、二次根式的除法公式和分母有理化是解题关键.9、C【解析】试题分析:根据三角形的内角和可知∠A+∠B+∠C=180°,即5∠A=180°,解得∠A=36°.故选C考点:三角形的内角和10、C【解析】根据题中“属于分解因式的是”可知,本题考查多项式的因式分解的判断,根据因式分解的概念,运用因式分解是把多项式分解成若干个整式相乘的形式,进行分析判断.【详解】A.属于整式乘法的变形.B.不符合因式分解概念中若干个整式相乘的形式.C.运用提取公因式法,把多项式分解成了5x与(2x-1)两个整式相乘的形式.D.不符合因式分解概念中若干个整式相乘的形式.故应选C【点睛】本题解题关键:理解因式分解的概念是把多项式分解成若干个整式相乘的形式,注意的是相乘的形式.二、填空题(每小题3分,共24分)11、1【分析】根据平行线的性质可得∠B=∠C=35°,再根据BC∥DE可根据两直线平行,同旁内角互补可得答案.【详解】解:∵AB∥CD,∴∠C=∠B=35°.∵DE∥CB,∴∠D=180°﹣∠C=1°.故答案为:1.【点睛】此题考查了平行线的性质,解答关键是掌握两直线平行,同旁内角互补.两直线平行,内错角相等.12、2或或4【分析】先求出直线与直线交点C的坐标,若使是等腰三角形,分三种情况讨论,即OQ=CQ或OC=OQ或OC=CQ,在直角三角形中利用勾股定理,根据等腰三角形的性质即可求出OQ.【详解】①如图,当OQ=CQ时,过点C作CE⊥OA于点E,直线与直线交于点C,得x=2,y=x=2∴C(2,2)设OQ=CQ=x,QE=2-x在Rt△CEQ中解得x=2②当OC=OQ时,过点C作CE⊥OA于点E,C(2,2)在Rt△CEO中,OC=③当OC=CQ时,过点C作CE⊥OA于点E∵OC=CQ∴OE=EQ=2∴OQ=2OE=4综上所示,若是等腰三角形,OQ的长为2或或4故答案为:2或或4【点睛】本题考查了等腰三角形的性质,在直角三角形中可用勾股定理解直角三角形,已知两条直线解析式可求出交点坐标.13、6【解析】根据三角形的中位线性质可得,14、2【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【详解】解:如图,∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a1,正方形B的面积=b1,正方形C的面积=c1,正方形D的面积=d1,又∵a1+b1=x1,c1+d1=y1,∴正方形A、B、C、D的面积和=(a1+b1)+(c1+d1)=x1+y1=71=2cm1.故答案为:2.【点睛】本题考查了勾股定理,注意掌握直角三角形中,两直角边的平方和等于斜边的平方是解答本题的关键.15、15.【解析】根据正方形ABCD,得到AD=CD,∠ADC=90°,根据等边△CDE,得到CD=DE,∠CDE=60°,推出AD=DE,得出∠DAE=∠AED,根据三角形的内角和定理求出∠DAE,从而可得∠EAB的度数.【详解】∵正方形ABCD,∴AD=CD,∠ADC=∠DAB=90°,∵等边△CDE,∴CD=DE,∠CDE=60°,∴∠ADE=90°-60°=30°,∴AD=DE,∴∠DAE=∠AED=(180°-∠ADE)=75°;∴∠EAB=90°-75°=15°.故答案为:15°【点睛】本题主要考查对正方形的性质,等边三角形的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.16、x≠1.【分析】当分式的分母不为零时,分式有意义,即x−1≠2.【详解】当x﹣1≠2时,分式有意义,∴x≠1.故答案为:x≠1.【点睛】本题考查分式有意义的条件;熟练掌握分式分母不为零时,分式有意义是解题的关键.17、等腰【分析】根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】∵∴在Rt△ABM中,C是斜边AB上的中点,∴MC=AB,同理在Rt△ABN中,CN=AB,∴MC=CN∴是等腰三角形,故答案为:等腰.【点睛】此题主要考查等腰三角形的判定,解题的关键是熟知直角三角形斜边上的中线等于斜边的一半.18、.【分析】根据旋转的性质可得,,然后根据等腰三角形两底角相等求出,再利用直角三角形两锐角互余列式计算即可得解.【详解】绕点逆时针旋转得到,,,在中,,,,.故答案为:.【点睛】本题考查了旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,比较简单,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键.三、解答题(共66分)19、(1)x>3(2)y=-x+5(3)9.5【分析】(1)根据C点坐标结合图象可直接得到答案;(2)利用待定系数法把点A(5,0),C(3,2)代入y=kx+b可得关于k、b得方程组,再解方程组即可;(3)由直线解析式求得点A、点B和点D的坐标,进而根据S四边形BODC=S△AOB-S△ACD进行求解即可得.【详解】(1)根据图象可得不等式2x-4>kx+b的解集为:x>3;(2)把点A(5,0),C(3,2)代入y=kx+b可得:,解得:,所以解析式为:y=-x+5;(3)把x=0代入y=-x+5得:y=5,所以点B(0,5),把y=0代入y=-x+5得:x=2,所以点A(5,0),把y=0代入y=2x-4得:x=2,所以点D(2,0),所以DA=3,所以S四边形BODC=S△AOB-S△ACD==9.5.【点睛】本题考查了待定系数法求一次函数解析式,直线与坐标轴的交点,一次函数与一元一次不等式的关系,不规则图形的面积等,熟练掌握待定系数法、注意数形结合思想的运用是解题的关键.20、(1)85°,115°,1;(2)AC的长为或;(1)四边形ABCD不是“湘一四边形”,四边形ABCD是平行四边形,理由见解析【分析】(1)连接BD,根据“湘一四边形”的定义求出∠B,∠C,利用等腰三角形的判定和性质证明BC=DC即可.
(2)分两种情形:①如图1-1,∠B=∠D=90°时,延长AD,BC交于点E.②如图2-1中,∠A=∠C=60°时,过D分别作DE⊥AB于E,DF⊥BC于点F,分别求解即可解决问题.
(1)结论:四边形ABCD不是“湘一四边形”,四边形ABCD是平行四边形.如图2中,作CN⊥AD于N,AM⊥CB于M.利用全等三角形的性质证明AD=BC即可解决问题.【详解】解:(1)如图1中,连接BD.
∵四边形ABCD是湘一四边形,∠A≠∠C,
∴∠B=∠D=85°,
∵∠A=75°,
∴∠C=160°-75°-2×85°=115°,
∵AD=AB,
∴∠ADB=∠ABD,
∵∠ADC=∠ABC,
∴∠CDB=∠CBD,
∴BC=CD=1,
故答案为85°,115°,1.
(2)①如图1-1,∠B=∠D=90°时,延长AD,BC交于点E,
∵∠DAB=60°,
∴∠E=10°,
又∵AB=4,AD=1
∴BE=4,AE=8,DE=5,
∴CE=,
∴BC=BE-CE=4,
∴AC=,
②如图2-1中,∠A=∠C=60°时,过D分别作DE⊥AB于E,DF⊥BC于点F,
∵∠DAB=∠BCD=60°,
又∵AB=4,AD=1,
∴AE=,DE=BF=,
∴BE=DF=,
∴CF=DF•tan10°=×,
∴BC=CF+BF=,
∴AC=,
综合以上可得AC的长为或.
(1)结论:四边形ABCD不是“湘一四边形”,四边形ABCD是平行四边形.
理由:如图2中,作CN⊥AD于N,AM⊥CB于M.
∵∠ADB=∠ABC,
∴∠CDN=∠ABM,
∵∠N=∠M=90°,CD=AB,
∴△CDN≌△ABM(AAS),
∴CN=AM,DN=BM,
∵AC=CA,CN=AM,
∴Rt△ACN≌Rt△CAM(HL),
∴AN=CM,∵DN=BM,
∴AD=BC,∵CD=AB,
∴四边形ABCD是平行四边形.【点睛】此题考查四边形综合题,“湘一四边形”的定义,全等三角形的判定和性质,平行四边形的判定,解直角三角形,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.21、(1)购买一个甲种文具15元,一个乙种文具5元;(2)有5种购买方案【分析】(1)设购买一个乙种文具x元,则一个甲种文具(x+10)元,根据“用300元购买甲种文具的个数是用50元购买乙种文具个数的2倍,”列方程解答即可;
(2)设购买甲种文具a个,则购买乙种文具(120-a)个,根据题意列不等式组,解之即可得出a的取值范围,结合a为正整数即可得出a的值,进而可找出各购买方案.【详解】解:(1)设购买一个乙种文具x元,则一个甲种文具(x+10)元,由题意得:
,解得x=5,经检验,x=5是原方程的解,且符合题意,x+10=15(元),
答:购买一个甲种文具15元,一个乙种文具5元;
(2)设购买甲种文具a个,则购买乙种文具(120-a)个,根据题意得:
,
解得36≤a≤1,
∵a是正整数,
∴a=36,37,38,39,1.
∴有5种购买方案.【点睛】本题考查分式方程的应用、一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.22、(1)∠DAE=15°;(2)见解析;(3)正确.【分析】(1)先根据三角形内角和定理求出∠BAC的度数,再根据角平分线的定义求得∠BAD的度数,在△ABE中,利用直角三角形的性质求出∠BAE的度数,从而可得∠DAE的度数.
(2)结合第(1)小题的计算过程进行证明即可.
(3)利用三角形的外角等于与它不相邻的两个内角之和先用∠B和∠C表示出∠A′DE,再根据三角形的内角和定理可证明∠DA′E=(∠C-∠B).【详解】(1)∵∠C=80°,∠B=40°,∴∠BAC=180°-∠B-∠C=180°-40°-80°=60°,∵AD是∠BAC的角平分线,∴∠BAD=∠CAD=∠BAC=30°,∵AE⊥BC,∴∠AEC=90°,∴∠BAE=50°,∴∠DAE=∠BAE-∠BAD=20°;(2)理由:∵AD是∠BAC的角平分线,∴∠BAD=∠CAD=∠BAC=(180°-∠B-∠C)=90°-∠B-∠C,∵AE⊥BC,∴∠AEC=90°,∴∠BAE=90°-∠B,∴∠DAE=∠BAE-∠BAD=(90°-∠B)-(90°-∠B-∠C)=∠C-∠B=(∠C-∠B);(3)(2)中的结论仍正确.
∵∠A′DE=∠B+∠BAD=∠B+∠BAC=∠B+(180°-∠B-∠C)=90°+∠B-∠C;在△DA′E中,∠DA′E=180°-∠A′ED-∠A′DE=180°-90°-(90°+∠B-∠C)=(∠C-∠B).【点睛】本题考查了三角形的角平分线和高,三角形的内角和定理,三角形的外角性质等知识,注意综合运用三角形的有关概念是解题关键.23、80°.【分析】先根据平行四边形的性质和三角形的内角和定理求出∠ABC与∠ABE度数,据此得出∠CBG度数,再证△BCG≌△DAF得出∠ADF=∠CBG,继而由三角形外角性质可得答案.【详解】∵四边形ABCD是平行四边形,∠C=50,∴∠A=∠C=50,∠ABC=180﹣∠C=130,AD=BC.∵∠E=30,∴∠ABE=180﹣∠A﹣∠E=100,∴∠CBG=30,在△BCG和△DAF中,∵,∴△BCG≌△DAF(SAS),∴∠CBG=∠ADF=30,则∠BFD=∠A+∠ADF=80.【点睛】此题主要考查平行四边形的性质与证明,解题的关键是熟知平行四边形的性质及全等三角形的判定与性质.24、(1);(2),;(3)存在点P使周长最小.【分析】(1)设直线AC解析式,代入,,用待定系数法解题即可;(2)将直线与直线AC两个解析式联立成方程组,转化成解二元一次方程组,再结合三角形面积公式解题;(3)作D、E关于轴对称,利用轴对称性质、两点之间线段最短解决最短路径问题,再用待定系数法解直线AE的解析式,进而令,解得直线与x轴的交点即可.【详解】(1)设直线AC解析式,把,代入中,得,解得,直线AC解析式.(2)联立,解得.,把代入中,得,,,,,,.故答案为:,.(3)作D、E关于轴对称,,周长,是定值,最小时,周长最小,,A、P、B共线时,最小,即最小,连接AE交轴于点P,点P即所求,,D、E关于轴对称,,设直线AE解析式,把,代入中,,解得,,令得,,,即存在点P使周长最小.【点睛】本题考查一次函数、二元一次方程组、轴对称最短路径问题、与x轴交点等知识,是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024完成任务的劳动合同范本
- 2024年大型活动临时食堂承包合同
- 2024年培训班股权出售合同
- 2024年城市轨道交通建设设计委托合同
- 2024-2025学年高中历史专题五走向世界的资本主义市场5.3“蒸汽”的力量课时素养评价含解析人民版必修2
- 2024-2025学年高中化学第1章从实验学化学第1节课时2系列微专题1:有关混合物分离和提纯的综合分析学案新人教版必修1
- 2024-2025学年新教材高中物理第一章抛体运动2运动的合成与分解练习含解析教科版必修2
- 2024年屋顶平台租赁条款
- 2024年基坑支护工程分包商协议
- 网络广告投放与管理服务合同
- 《人工智能基础》课件-AI的前世今生:她从哪里来
- 人教八年级上册英语第六单元《Section A (1a-2d)》教学课件
- 中医师承跟师笔记50篇
- 树木移植工程技术交底
- 南非电力市场投资前景预测报告(目录)
- 国家生态环境建设项目管理办法
- 秦腔传统剧《草坡面理》
- 直流电机设计参数计算
- 核心素养下小学语文教学策略探究
- 室外球墨铸铁管施工方案
- 通用技术学考300题
评论
0/150
提交评论