2025届陕西省榆林市靖边第二中学数学八上期末达标测试试题含解析_第1页
2025届陕西省榆林市靖边第二中学数学八上期末达标测试试题含解析_第2页
2025届陕西省榆林市靖边第二中学数学八上期末达标测试试题含解析_第3页
2025届陕西省榆林市靖边第二中学数学八上期末达标测试试题含解析_第4页
2025届陕西省榆林市靖边第二中学数学八上期末达标测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届陕西省榆林市靖边第二中学数学八上期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列计算错误的是()A. B.C. D.2.已知直线y=2x与y=﹣x+b的交点(﹣1,a),则方程组的解为()A. B. C. D.3.若分式有意义,则的取值范围是()A. B. C. D.且4.如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC的长为()A.2 B. C.4 D.5.下列选项所给条件能画出唯一的是()A.,, B.,,C., D.,,6.下列命题中不正确的是()A.全等三角形的对应边相等 B.全等三角形的面积相等C.全等三角形的周长相等 D.周长相等的两个三角形全等7.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50° B.70° C.75° D.80°8.估计的值在()A.和之间 B.和之间 C.和之间 D.和之间9.已知实数x,y满足(x-2)2+=0,则点P(x,y)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.下列关于的说法中,错误的是()A.是无理数 B. C.10的平方根是 D.是10的算术平方根二、填空题(每小题3分,共24分)11.已知点A与B关于x轴对称,若点A坐标为(﹣3,1),则点B的坐标为____.12.如图,P为∠MBN内部一定点,PD⊥BN,PD=3,BD=1.过点P的直线与BM和BN分别相交于点E和点F,A是BM边上任意一点,过点A作AC⊥BN于点C,有=3,则△BEF面积的最小值是______.13.要测量河岸相对两点A,B的距离,已知AB垂直于河岸BF,先在BF上取两点C,D,使CD=CB,再过点D作BF的垂线段DE,使点A,C,E在一条直线上,如图,测出DE=20米,则AB的长是_____米.14.已知等边三角形ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边三角形AB1C1,再以等边三角形AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边三角形AB2C2,再以等边三角形AB2C2的边B2C2边上的高AB3为边作等边三角形,得到第三个等边AB3C3;…,如此下去,这样得到的第n个等边三角形ABnCn的面积为.15.如图,已知正六边形ABCDEF的边长是5,点P是AD上的一动点,则PE+PF的最小值是_____.16.已知,x、y为实数,且y=﹣+3,则x+y=_____.17.规定,若,则x的值是_____.18.在实验操作中,某兴趣小组的得分情况是:有5人得10分,有8人得9分,有4人得8分,有3人得7分,则这个兴趣小组实验操作得分的平均分是________.三、解答题(共66分)19.(10分)求证:三角形三个内角的和是180°20.(6分)解下列分式方程:(1)(2).21.(6分)如图,直线y=-x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B'处.(1)求A、B两点的坐标;(2)求S△ABO·(3)求点O到直线AB的距离.(4)求直线AM的解析式.22.(8分)已知,.(1)若,作,点在内.①如图1,延长交于点,若,,则的度数为;②如图2,垂直平分,点在上,,求的值;(2)如图3,若,点在边上,,点在边上,连接,,,求的度数.23.(8分)如图,ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与B,C重合),连结AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BAD=20°时,∠EDC=°;(2)请你回答:“当DC等于时,ABDDCE”,并把“DC等于”作为已知条件,证明ABDDCE;(3)在D点的运动过程中,ADE的形状也在改变,判断当∠BAD等于时,ADE是等腰三角形.(直接写出结果,不写过程)24.(8分)已知点P(8–2m,m–1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.25.(10分)证明:如果两个三角形有两个角及它们的夹边的高分别相等,那么这两个三角形全等.26.(10分)计算:(x﹣2)2﹣(x﹣3)(x+3)

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据二次根式的加减法对A进行判断;根据平方差公式对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】A、,计算正确,不符合题意;B、,计算错误,符合题意;C、,计算正确,不符合题意;D、,计算正确,不符合题意;故选:B.【点睛】本题主要考查了二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.2、D【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【详解】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故选D.【点睛】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.3、D【解析】∵分式有意义,∴,∴且,解得且.故选D.4、C【详解】解:∵∠B=60°,DE⊥BC,

∴BD=2BE=2,

∵D为AB边的中点,

∴AB=2BD=4,

∵∠B=∠C=60°,

∴△ABC为等边三角形,

∴AC=AB=4,

故选:C.5、B【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A、3+4<8,不能构成三角形,故A错误;B、,,,满足ASA条件,能画出唯一的三角形,故B正确;C、,,不能画出唯一的三角形,故C错误;D、,,,不能画出唯一的三角形,故D错误;故选:B.【点睛】此题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.6、D【解析】A.全等三角形的对应边相等,正确,故本选项错误;B.全等三角形的面积相等,正确,故本选项错误;C.全等三角形的周长相等,正确,故本选项错误;D.周长相等的两个三角形全等,错误,故本选项正确,故选D.7、B【解析】分析:根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.详解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故选B.点睛:本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.8、D【分析】利用算术平方根进行估算求解.【详解】解:∵∴故选:D.【点睛】本题考查无理数的估算,掌握算术平方根的概念正确进行计算从而进行估算是本题的解题关键.9、D【解析】根据非负数的性质得到x﹣2=0,y+1=0,则可确定点P(x,y)的坐标为(2,﹣1),然后根据象限内点的坐标特点即可得到答案.【详解】∵(x﹣2)20,∴x﹣2=0,y+1=0,∴x=2,y=﹣1,∴点P(x,y)的坐标为(2,﹣1),在第四象限.故选D.【点睛】本题考查了点的坐标及非负数的性质.熟记象限点的坐标特征是解答本题的关键.10、C【解析】试题解析:A、是无理数,说法正确;

B、3<<4,说法正确;

C、10的平方根是±,故原题说法错误;

D、是10的算术平方根,说法正确;

故选C.二、填空题(每小题3分,共24分)11、(﹣3,﹣1)【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】解:点A与点B关于x轴对称,点A的坐标为(﹣3,1),则点B的坐标是(﹣3,﹣1).故答案为(﹣3,﹣1).【点睛】本题考查关于x轴对称的点的坐标,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题的关键.12、24【分析】如图,作EH⊥BN交BN于点H,先证得△BHE∼△BCA,然后设BH=t,进而得到EH=3t,HD=1-t,同理得△FPD∼△FEH,求得,进而求得,最后根据,令,得到.【详解】解:如图,作EH⊥BN交BN于点H,∵AC⊥BN,∴EH//AC,∴△BHE∼△BCA,∴设BH=t,则EH=3t,HD=BD-BH=1-t又∵PD⊥BN,∴EH//PD,∴△FPD∼△FEH,∴又∵∴解得:∴,∴,∴,令,则,而,∴∴△BEF面积的最小值是24,故答案为:24.【点睛】本题考查相似三角形的性质与判定综合问题,解题的关键是根据相似三角形的性质构建各边的关系,以及用换元法思想求代数式的最值.13、1【分析】由AB、ED垂直于BD,即可得到∠ABC=∠EDC=90°,从而证明△ABC≌△EDC此题得解.【详解】解:∵AB⊥BD,ED⊥AB,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED=1.故答案为:1.【点睛】考查了三角形全等的判定和性质,解题是熟练判定方法,本题属于三角形全等的判定应用.14、【解析】由AB1为边长为2等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出第一个等边三角形AB1C1的面积,同理求出第二个等边三角形AB2C2的面积,依此类推,得到第n个等边三角形ABnCn的面积.解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴第一个等边三角形AB1C1的面积为×()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴第二个等边三角形AB2C2的面积为×()2=()2;依此类推,第n个等边三角形ABnCn的面积为()n.故答案为()n15、10【解析】利用正多边形的性质,可得点B关于AD对称的点为点E,连接BE交AD于P点,那么有PB=PF,PE+PF=BE最小,根据正六边形的性质可知三角形APB是等边三角形,因此可知BE的长为10,即PE+PF的最小值为10.故答案为10.16、2或2.【分析】直接利用二次根式有意义的条件求出x好y的值,然后代入x+y计算即可.【详解】解:由题意知,x2﹣2≥0且2﹣x2≥0,所以x=±2.所以y=3.所以x+y=2或2故答案是:2或2.【点睛】此题主要考查了二次根式有意义的条件以及平方根,正确得出x,y的值是解题关键.17、【分析】根据题中的新定义化简所求式子,计算即可求出的值.【详解】∵,根据题意得到分式方程:,

整理,得:,解得:,经检验,是分式方程的解,

故答案是:.【点睛】本题考查了解分式方程,弄清题中的新定义是解本题的关键.注意解分式方程需检验.18、87.5【分析】根据“平均分=总分数÷总人数”求解即可.【详解】这个兴趣小组实验操作得分的平均分=(分).故答案为:87.5分.【点睛】本题考查了加权平均数的求法.熟记公式:是解决本题的关键.三、解答题(共66分)19、见解析【解析】分析:根据题目写出已知,求证,证明即可.详解:已知:的三个内角分别为;

求证:.

证明:过点A作直线MN,使MN∥BC.

∵MN∥BC,

∴∠B=∠MAB,∠C=∠NAC(两直线平行,内错角相等)

∵∠MAB+∠NAC+∠BAC=180°(平角定义)

∴∠B+∠C+∠BAC=180°(等量代换)

即∠A+∠B+∠C=180°.点睛:考查平行线的性质,过点A作直线MN,使MN∥BC.是解题的关键.20、(1)无解(2)【解析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)去分母得:2x-2+3x+3=6,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:1-2x=2x-4,解得:x=,经检验x=是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21、(1)A(6,0),B(0,8);(2)24;(1)4.8;(4)y=-x+1.【分析】(1)由解析式令x=0,y=x+8=8,即B(0,8),令y=0时,x=6,即A(6,0);(2)根据三角形面积公式即可求得;(1)根据三角形面积求得即可;(4)由折叠的性质,可求得AB′与OB′的长,BM=B′M,然后设MO=x,由在Rt△OMB′中,OM2+OB′2=B′M2,求出M的坐标,设直线AM的解析式为y=kx+b,再把A、M坐标代入就能求出解析式.【详解】解:(1)当x=0时,y=x+8=8,即B(0,8),当y=0时,x=6,即A(6,0);(2)∵点A的坐标为:(6,0),点B坐标为:(0,8),∠AOB=90°,∴OA=6,OB=8,∴,∴S△ABO=OA•OB=×6×8=24;(1)设点O到直线AB的距离为h,∵S△ABO=OA•OB=AB•h,∴×6×8=×10h,解得h=4.8,∴点O到直线AB的距离为4.8;(4)由折叠的性质,得:AB=AB′=10,∴OB′=AB′-OA=10-6=4,设MO=x,则MB=MB′=8-x,在Rt△OMB′中,OM2+OB′2=B′M2,即x2+42=(8-x)2,解得:x=1,∴M(0,1),设直线AM的解析式为y=kx+b,把(0,1);(6,0)代入可得,,解得,,所以,直线AM的解析式为y=-x+1.【点睛】此题考查了折叠的性质、待定系数法求一次函数的解析式、一次函数图象上点的坐标特征、勾股定理等知识,解答本题的关键是求出OM的长度.22、(1)①15°;②;(2)【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得;②构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得.(2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得.【详解】(1)①连接AE,在,因为,,,,,,,,,,,,,,故答案为:.②过C作交DF延长线于G,连接AEAD垂直平分BE,,,,,故答案为:;(2)以AB向下构造等边,连接DK,延长AD,BK交于点T,,,,,,,等边中,,,,,在和中,,等边三角形三线合一可知,BD是边AK的垂直平分线,,,,,故答案为:.【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据.23、(1)20;(2)2;2;证明见解析;(3)30°或60°【分析】(1)根据外角等于不相邻两内角和可解题;(2)当DC=AB=2时,即可求证△ABD≌△DCE;(3)分类谈论,①若AD=AE时;②若DA=DE时,③若EA=ED时,即可解题.【详解】解:(1)∵∠BAD=20°,∠B=40°,∴∠ADC=60°,∵∠ADE=40°,∴∠EDC=20°.(2)DC=AB=2时,∵AB=AC=2,∴∠B=∠C,∵∠BAD=180°-∠B-∠ADB=180°-40°-∠ADB=140°-∠ADB,∠CDE=180°-∠ADE-∠ADB=180°-40°-∠ADB=140°-∠ADB,∴∠BAD=∠CDE.在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)∵AB=AC,∴∠B=∠C=40°,①若AD=AE时,则∠ADE=∠AED=40°,∵∠AED>∠C,∴△ADE不可能是等腰三角形;②若DA=DE时,即∠DAE=∠DEA=(180°-40°)=70°,∵∠BAC=180°-40°-40°=100°,∴∠BAD=100°-70°=30°;③若EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°-40°=60°,∴当∠BAD=30°或60°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论