版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省盐城市部分地区八年级数学第一学期期末调研试题题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在中,,分别以,为圆心,大于长为半径画弧,两弧相交于点、,连接,与,分别相交于点,点,连结,当,时,的周长是()A. B. C. D.2.如果一个多边形的内角和是1800°,这个多边形是()A.八边形 B.十四边形 C.十边形 D.十二边形3.长方形的面积是9a2﹣3ab+6a3,一边长是3a,则它的另一边长是()A.3a2﹣b+2a2 B.b+3a+2a2 C.2a2+3a﹣b D.3a2﹣b+2a4.下列各组数中,是勾股数的是()A. B. C. D.5.下列四张扑克牌中,左旋转后还是和原来一样的是()A. B. C. D.6.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A. B.C. D.7.如图,把纸片沿DE折叠,当点A落在四边形BCDE的外部时,则与和之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A. B.C. D.8.已知小明从地到地,速度为千米/小时,两地相距千米,若用(小时)表示行走的时间,(千米)表示余下的路程,则与之间的函数表达式是()A. B. C. D.9.如图,ΔABC与ΔA’B’C’关于直线l对称,则∠B的度数为()A.30° B.50° C.90° D.100°10.一个等腰三角形的两边长分别为3和5,则它的周长为()A.11 B.12 C.13 D.11或13二、填空题(每小题3分,共24分)11.分解因式:3x2-6x+3=__.12.下列实数中,0.13,π,﹣,,1.212212221…(两个1之间依次多一个2)中,是无理数的有__个.13.现定义一种新的运算:,例如:,则不等式的解集为.14.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.15.分解因式:x-x3=____________.16.4的平方根是.17.已知,则式子__________________.18.如图,长方形中,,,点在边上,且,点是边上一点,连接,将四边形沿折叠,若点的对称点恰好落在边上,则的长为____.三、解答题(共66分)19.(10分)计算:(1)(+1)(2-)(2)20.(6分)已知:在中,,点在上,连结,且.(1)如图1,求的度数;(2)如图2,点在的垂直平分线上,连接,过点作于点,交于点,若,,求证:是等腰直角三角形;(3)如图3,在(2)的条件下,连接,过点作交于点,且,若,求的长.21.(6分)某长途汽车客运公司规定旅客可以免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(千克)的一次函数,且部分对应关系如下表所示.(1)求y关于x的函数关系式;(2)求旅客最多可免费携带行李的质量;(3)当行李费为3≤y≤10时,可携带行李的质量x的取值范围是.22.(8分)小明随机抽取了某校八年级部分学生,针对他们晚上在家学习时间的情况进行调查,并将调查结果绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)本次抽取的八年级学生晚上学习时间的众数是小时,中位数是小时;(3)若该校共有600名八年级学生,则晚上学习时间超过1.5小时的约有多少名学生?23.(8分)计算(1)+|2﹣|﹣﹣(π﹣)0(2)(﹣2)×+324.(8分)自2019年11月20日零时起,大西高铁车站开始试点电子客票业务,旅客购票乘车更加便捷.大西高铁客运专线是国家《中长期铁路网规划》中的重要组成部分,它的建成将意味着今后山西人去西安旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车.已知高铁线路中从A地到某市的高铁行驶路程是400km,普通列车的行驶路程是高铁行驶路程的1.3倍,若高铁的平均速度(km/h)是普通列车平均速度(km/h)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3.6h,求普通列车和高铁的平均速度.25.(10分)生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的13,则梯子比较稳定,如图,AB为一长度为6(1)当梯子稳定摆放时,它的顶端能达到5.7米高的墙头吗?(2)如图2,若梯子底端向左滑动(32﹣2)米,那么梯子顶端将下滑多少米?26.(10分)如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.
参考答案一、选择题(每小题3分,共30分)1、B【分析】由作图可知,DE是AC的垂直平分线,可得AE=CE,则的周长=AB+BC.【详解】解:由作图可知,DE是AC的垂直平分线,则AE=CE,∴的周长=AB+BE+AE=AB+BE+CE=AB+BC=5+9=14故选:B【点睛】本题考查了作图—垂直平分线的作法和垂直平分线的性质的应用.是中考常考题型.2、D【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【详解】这个正多边形的边数是n,根据题意得:(n﹣2)•180°=1800°解得:n=1.故选D.【点睛】本题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.3、C【分析】根据长方形面积公式“长×宽=面积”,列出式子后进行化简计算即可。【详解】长方形的面积=长×宽,由此列出式子(9a1﹣3ab+6a3)÷3a=3a﹣b+1a1.解:(9a1﹣3ab+6a3)÷3a=3a﹣b+1a1,故选:C.【点睛】本题考查了用代数式表示相应的量,解决本题的关键是熟练掌握整式除法的运算法则。4、D【分析】满足a2+b2=c2的三个正整数,称为勾股数,由此求解即可.【详解】A、∵72+82≠92,∴此选项不符合题意;B、∵62+82≠112,∴此选项不符合题意;C、∵52+122≠142,此选项不符合题意;D、∵42+32=52,∴此选项符合题意.故选:D.【点睛】此题考查了勾股数,说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…5、C【解析】根据中心对称图形的定义进行判断可得答案.【详解】解:根据中心对称图形的定义,左旋转后还是和原来一样的是只有C.故选C.【点睛】此题目要考查了中心对称图形的相关定义:一个图形绕着中心点旋转后能与自身重合,我们把这种图形叫做中心对称图形,这个中心点称为对称中心.6、B【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:故选B.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.7、C【分析】根据折叠性质得出∠A=∠A′,根据三角形外角性质得出∠1=∠DOA+∠A,∠DOA=∠2+∠A′,即可得出答案.【详解】如图,∵根据折叠性质得出∠A=∠A′,
∴∠1=∠DOA+∠A,∠DOA=∠2+∠A′,
∴∠1=∠A+∠2+∠A,
∴2∠A=∠1-∠2,
故选C.【点睛】本题考查三角形折叠角度问题,掌握折叠的性质和三角形外角性质是关键.8、D【分析】根据路程=速度×时间,结合“剩下的路程=全路程-已行走”容易知道y与x的函数关系式.【详解】∵剩下的路程=全路程-已行走,∴y=3-4x.故选:D.【点睛】本题主要考查了一次函数的应用,理清“路程、时间、速度”的关系是解答本题的关键.9、D【解析】∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°;∴∠B=180°﹣80°=100°.故选D.10、D【分析】根据等腰三角形的性质分两种情况讨论可得.【详解】①若等腰三角形的腰长为3,底边长为5,∵3+3=6>5,∴能组成三角形,∴它的周长是:3+3+5=11;②若等腰三角形的腰长为5,底边长为3,∵5+3=8>5,∴能组成三角形,∴它的周长是:5+5+3=1,综上所述,它的周长是:11或1.故选D.【点睛】此题考查了等腰三角形的性质与三角形三边关系.此题难度不大,解题的关键是注意分类讨论思想的应用,小心别漏解.二、填空题(每小题3分,共24分)11、3(x-1)2【解析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】.故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12、3【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,(每两个1之间依次多一个2)是无理数,其余的都是有理数,即上述各数中,无理数有3个.13、【分析】根据新定义规定的运算规则列出不等式,解不等式即可得.【详解】根据题意知:(﹣1)1﹣1x≥0,﹣1x≥﹣4,解得:x≤1.故答案为:x≤1.【点睛】本题考查了解一元一次不等式,解题的关键是根据新定义列出关于x的不等式.14、(a+1)1.【分析】原式提取公因式,计算即可得到结果.【详解】原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],
=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],
=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],
=…,
=(a+1)1.
故答案是:(a+1)1.【点睛】考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.15、x(1+x)(1-x)【分析】直接提取公因式x,再利用平方差公式分解因式得出答案.【详解】x−x3=x(1−x2)=x(1−x)(1+x).故答案为x(1−x)(1+x).【点睛】本题考查提取公因式法以及公式法分解因式,正确应用公式法是解题关键.16、±1.【解析】试题分析:∵,∴4的平方根是±1.故答案为±1.考点:平方根.17、1【分析】将已知的式子两边平方,进一步即可得出答案.【详解】解:∵,∴,即,∴1.故答案为:1.【点睛】本题考查了完全平方公式和代数式求值,属于常考题型,熟练掌握完全平方公式和整体的思想是解题的关键.18、1.【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt△A′OE中根据勾股定理列出方程求解即可.【详解】解:如图,
∵四边形OABC是矩形,
∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,
∵CD=1DB,
∴CD=6,BD=2,
∴CD=AB,
∵将四边形ABDE沿DE折叠,若点A的对称点A′恰好落在边OC上,
∴A′D=AD,A′E=AE,
在Rt△A′CD与Rt△DBA中,,∴Rt△A′CD≌Rt△DBA(HL),
∴A′C=BD=2,
∴A′O=4,
∵A′O2+OE2=A′E2,
∴42+OE2=(8-OE)2,
∴OE=1,
故答案是:1.【点睛】本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.三、解答题(共66分)19、(1);(2).【分析】(1)根据二次根式的混合运算法则,去括号,同类二次根式合并化简即可;(2)根据二次根式的混合运算法则,先算除法和利用完全平方公式计算,进一步化简合并即可.【详解】(1)原式,故答案为:;(2)原式,故答案为:.【点睛】本题考查了二次根式的混合运算法则,完全平方公式的应用,注意计算结果化成最简.20、(1);(2)证明见解析;(3).【分析】(1)根据已知推出,然后利用三角形外角的性质有,则,然后利用即可求解;(2)由垂直平分线的性质得到,从而有,根据同位角相等,两直线平行可得出,进而得出,然后通过等量代换得出,所以,,则结论可证;(3)首先证明,则有,,,然后证明得出,然后通过对角度的计算得出,,同理证明点在的垂直平分线上,则有,所以,最后通过证明,得出,则答案可解.【详解】(1)(2)∵点在线段的垂直平分线上.又∴是等腰直角三角形(3)如图,过作交的延长线于点于点,连接,令,与的交点分别为点,.在四边形中,又又又又又又∴点在的垂直平分线上同理点在的垂直平分线上【点睛】本题主要考查全等三角形的判定及性质,平行线的性质,角的和与差,掌握全等三角形的判定及性质,平行线的性质,角的和与差是解题的关键.21、(1)y=x-2;(2)10千克;(3)25≤x≤1.【分析】(1)利用待定系数法求一次函数解析式即可解答;(2)令y=0时求出x的值即可;(3)分别求出y=3时,x的值和y=10时,x的值,再利用一次函数的增减性即可求出x的取值范围.【详解】解:(1)∵y是
x的一次函数,
∴设y=kx+b(k≠0)
将x=15,y=1;x=20,y=2分别代入y=kx+b,得,
解得:,
∴函数表达式为y=x-2,
(2)将y=0代入y=x-2,得0=x-2,
∴x=10,答:旅客最多可免费携带行李的质量为10千克.
(3)把y=3代入解析式,可得:x=25,
把y=10代入解析式,可得:x=1,∵>0∴y随x的增大而增大
所以可携带行李的质量x(kg)的取值范围是25≤x≤1,
故答案为:25≤x≤1.【点睛】本题考查了一次函数的应用,掌握利用了待定系数法求一次函数解析式和已知函数值的取值范围求自变量的取值范围是解决此题的关键.22、(1)补全条形统计图和扇形统计图见解析;(2)2,2;(3)晚上学习时间超过1.5小时的约有450名学生.【分析】(1)先由1小时的人数及其所占百分比求得总人数,总人数乘以2.5小时对应百分比求得其人数,用2小时人数除以总人数可得其百分比;
(2)根据人数、中位数的定义求解可得;
(3)总人数乘以样本中2小时和2.5小时人数所占百分比之和可得.【详解】(1)分别由条形统计图和扇形统计图知:1小时的人数为2人、所占百分比为5%,∴被调查的学生总人数为2÷5%=40人,
∴2.5小时的人数为40×30%=12人,2小时人数所占百分比为补全条形统计图和扇形统计图如下:(2)2小时出现的次数最多,是18次,因此众数是2小时,把这40个数据从小到大排列后处在第20、21位的数都是2,因此中位数是2小时,故答案为:2,2;(3)晚上学习时间超过1.5小时的学生约有(人)答:晚上学习时间超过1.5小时的约有450名学生.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、(1)3;(2)6-.【分析】(1)先去绝对值,再开方和乘方,最后算加减法即可.(2)先去括号,再算乘法,最后算加减法即可.【详解】(1)+|2﹣|﹣﹣(π﹣)0(2)(﹣2)×+3=6﹣2+=6﹣【点睛】本题考查了实数的混合运算,掌握实数混合运算的法则是解题的关键.24、普通列车的平均速度是100km/h,高铁的平均速度是250km/h.【分析】由高铁行驶路程×1.3即可求出普通列车的行驶路程;设普通列车的平均速度为xkm/h,则高铁的平均速度为2.5km/h,根据乘坐高铁所需时间比乘坐普通列车所需时间缩短3.6h列出分式方程即可求解。【详解】解:普通列车的行驶路程为:400×1.3=520(km).设普通列车的平均速度为xkm/h,则高铁的平均速度为2.5km/h,则根据题意得:,解得x=100,经检验,x=100是原分式方程的解,且符合题意.则高铁的平均速度是100×2.5=250(km/h).答:普通列车的平均速度是100km/h,高铁的平均速度是250km/h.【点睛】本题主要考查分式方程的应用,解题的关键是正确解读题意,设出未知数,根据等量关系列出分式方程.25、(1)它的顶端不能到达5.7米高的墙头;(2)梯子的顶端将下滑动2米.【解析】(1)由题意可得,AB=6m,OB=13AB=2m,在Rt△AOB中,由勾股定理求得OA的长,与5.7比较即可得结论;(2)由题意求得OD=32米,在Rt△DOC中,由勾股定理求得OC的长,即可求得AC的长,由此即可求得结论【详解】(1)由题意可得,AB=6m,OB=13在Rt△AOB中,由勾股定理可得,AO=AB∵42<5.7,∴梯子的顶端不能到达5.7米高的墙头;(2)因梯子底端向左滑动(32﹣2)米,∴BD=(32﹣2)米,∴OD=OB+BD=32米,在Rt△DOC中,由勾股定理可得,OC=CD∴AC=OA-OC=42-32=2∴梯子的顶端将下滑动2米.【点睛】本题考查了勾股定理的应用,把实际问题转化为数学问题,利用勾股定理求解是解决此类问题的基本思路.26、(1)AB的解析式是y=-x+1.点B(3,0).(2)n-1;(3)(3,4)或(5,2)或(3,2).【解析】试题分析:(1)把A的坐标代入直线AB的解析式,即可求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年天津市高考思想政治试卷(含答案解析)
- 2024污水处理厂工程项目设计合同(改)
- 2024年工程款支付担保协议(三方法人)
- 2024年区域代理商合作协议范本
- 2024年工程资料转化与迁移合同
- 2024年国际版权许可使用协议
- 2024标准户外广告合同格式
- 2024补偿贸易合同贸易合同范本
- 2024年Data Center Colocation Services Agreement(数据中心托管服务合同)
- 2024-2025学年高中地理第一章人口的变化单元评价含解析新人教版必修2
- 【客舱服务质量与空中乘务员综合素质浅论4800字(论文)】
- 2023年全媒体运营师理论考试复习题库(单选题)
- 市场营销策划(本)-形考任务一(第一 ~ 四章)-国开(CQ)-参考资料
- 血管活性药物
- 晋陕鄂尔多斯盆地保德地区保3-08井区煤层气资源开发利用与矿区生态保护修复方案
- JJF 2104-2024 海水溶解氧测量仪校准规范
- 2024年湖北汉江王甫洲水力发电有限责任公司招聘笔试参考题库含答案解析
- 电动滚筒基础知识培训课件
- 港口现场装卸指导员工作职责
- 牧业设备-TMR标准化操作流程-培训课件
- 2024新人教版初中英语单词表汇总(七-九年级)中考复习必背
评论
0/150
提交评论