2025届甘肃省庆阳市数学八上期末经典试题含解析_第1页
2025届甘肃省庆阳市数学八上期末经典试题含解析_第2页
2025届甘肃省庆阳市数学八上期末经典试题含解析_第3页
2025届甘肃省庆阳市数学八上期末经典试题含解析_第4页
2025届甘肃省庆阳市数学八上期末经典试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省庆阳市数学八上期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在直角坐标系中,点与点关于轴对称,则点的坐标为()A. B. C. D.2.吉安市骡子山森林公园风光秀丽,2018年的国庆假期每天最高气温(单位:℃)分别是:22,23,22,23,x,1,1,这七天的最高气温平均为23℃,则这组数据的众数是()A.23 B.1 C.1.5 D.253.在平面直角坐标系中,点关于轴对称的点为()A. B. C. D.4.下列各式中正确的是()A. B. C.±4 D.35.已知中,是的2倍,比大,则等于()A. B. C. D.6.估算在()A.5与6之间 B.6与7之间 C.7与8之间 D.8与9之间7.如果一个等腰三角形的两条边长分别为3和7,那么这个等腰三角形的周长为()A.13 B.17 C.13或17 D.以上都不是8.要使分式有意义,则x的取值应满足()A.x≠2 B.x=2 C.x=1 D.x≠19.一个三角形任意一边上的高都是这边上的中线,则对这个三角形最准确的判断是()A.等腰三角形 B.直角三角形 C.正三角形 D.等腰直角三角形10.代数之父——丢番图(Diophantus)是古希腊的大数学家,是第一位懂得使用符号代表数来研究问题的人.丢番图的墓志铭与众不同,不是记叙文,而是一道数学题.对其墓志铭的解答激发了许多人学习数学的兴趣,其中一段大意为:他的一生幼年占,青少年占,又过了才结婚,5年后生子,子先父4年而卒,寿为其父之半.下面是其墓志铭解答的一种方法:解:设丢番图的寿命为x岁,根据题意得:,解得.∴丢番图的寿命为84岁.这种解答“墓志铭”体现的思想方法是()A.数形结合思想 B.方程思想 C.转化思想 D.类比思想11.下列各数中,是无理数的是()A.3.14 B. C.0.57 D.12.若三角形两边长分别是4、5,则周长c的范围是()A.1<c<9 B.9<c<14 C.10<c<18 D.无法确定二、填空题(每题4分,共24分)13.一个正数的两个平方根分别是3a+2和a-1.则a的值是_______.14.如图,在等腰直角△ABC中,AB=4,点D是边AC上一点,且AD=1,点E是AB边上一点,连接DE,以线段DE为直角边作等腰直角△DEF(D、E、F三点依次呈逆时针方向),当点F恰好落在BC边上时,则AE的长是_____.15.如图,有一张长方形纸片,,.先将长方形纸片折叠,使边落在边上,点落在点处,折痕为;再将沿翻折,与相交于点,则的长为___________.16.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为_______.17.如图,在▱ABCD中,对角线AC与BD相交于点O,AC⊥CD,OE∥BC交CD于E,若OC=4,CE=3,则BC的长是____.18.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图如图,可计算出该店当月销售出水果的平均价格是______元三、解答题(共78分)19.(8分)为了解某区八年级学生的睡眠情况,随机抽取了该区八年级学生部分学生进行调查.已知D组的学生有15人,利用抽样所得的数据绘制所示的统计图表.组别睡眠时间根据图表提供的信息,回答下列问题:(1)试求“八年级学生睡眠情况统计图”中的a的值及a对应的扇形的圆心角度数;(2)如果睡眠时间x(时)满足:,称睡眠时间合格.已知该区八年级学生有3250人,试估计该区八年级学生睡眠时间合格的共有多少人?(3)如果将各组别学生睡眠情况分组的最小值(如C组别中,取),B、C、D三组学生的平均睡眠时间作为八年级学生的睡眠时间的依据.试求该区八年级学生的平均睡眠时间.20.(8分)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg与B型机器人搬运600kg所用时间相等,两种机器人每小时分别搬运多少化工原料?21.(8分)如果用c表示摄氏温度,f表示华氏温度,则c与f之间的关系为:,试分别求:(1)当=68和=-4时,的值;(2)当=10时,的值.22.(10分)我县正准备实施的某项工程接到甲、乙两个工程队的投标书,甲、乙工程队施工一天的工程费用分别为2万元和1.5万元,县招投标中心根据甲、乙两工程队的投标书测算,应有三种施工方案:方案一:甲队单独做这项工程刚好如期完成;方案二:乙队单独做这项工程,要比规定日期多5天;方案三:若甲、乙两队合做4天后,余下的工程由乙队单独做,也正好如期完成.根据以上方案提供的信息,在确保工期不耽误的情况下,你认为哪种方案最节省工程费用,通过计算说明理由.23.(10分)已知,点.(1)求的面积;(2)画出关于轴的对称图形.24.(10分)我校要进行理化实验操作考试,需用八年级两个班级的学生整理实验器材.已知一班单独整理需要分钟完成.如果一班与二班共同整理分钟后,一班另有任务需要离开,剩余工作由二班单独整理分钟才完成任务,求二班单独整理这批实验器材需要多少分钟?25.(12分)某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.据上述条件解决下列问题:①规定期限是多少天?写出解答过程;②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?26.阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解析:由分母为,可设则对应任意x,上述等式均成立,,,..这样,分式被拆分成了一个整式与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式.(2)当时,直接写出________,的最小值为________.

参考答案一、选择题(每题4分,共48分)1、B【解析】根据关于轴对称的点的坐标特点是横坐标相等,纵坐标相反确定点B的坐标.【详解】解:点与点关于轴对称,所以点B的坐标为,故选:B【点睛】本题考查了轴对称与坐标的关系,理解两点关于x或y轴对称的点的坐标变化规律是解题关键.2、A【分析】先根据平均数的定义列出关于x的方程,求解x的值,继而利用众数的概念可得答案.【详解】解:根据题意知,22+23+22+23+x+1+1=23×7,解得:x=23,则数据为22,22,23,23,23,1,1,所以这组数据的众数为23,故选:A.【点睛】本题主要考查众数,解题的关键是掌握平均数和众数的概念.3、B【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【详解】点P(−2,3)关于x轴对称的点的坐标为(−2,−3).故选:B.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.4、B【分析】根据算术平方根定义、性质及立方根的定义逐一判断即可得.【详解】解:A.2,故选项错误;B.1,故选项正确;C.4,故选项错误;D.3,故选项错误.故选:B.【点睛】本题主要考查立方根与算术平方根,解题的关键是掌握算术平方根定义、性质及立方根的定义.5、B【分析】设,则可表示出来,然后利用三角形内角和定理即可求出的度数.【详解】设,则根据三角形内角和定理得,解得故选:B.【点睛】本题主要考查三角形内角和定理,掌握三角形内角和定理是解题的关键.6、D【解析】直接得出接近的有理数,进而得出答案.【详解】∵<<,

∴8<<9,

∴在8与9之间.

故选:D.【点睛】本题考查了估算无理数的大小,正确得出接近的有理数是解题的关键.7、B【解析】当3厘米是腰时,则3+3<7,不能组成三角形,应舍去;当7厘米是腰时,则三角形的周长是3+7×2=17(厘米).故选B.8、A【解析】根据分式的性质,要使分式有意义,则分式的分母不等于0.【详解】根据题意可得要使分式有意义,则所以可得故选A.【点睛】本题主要考查分式的性质,关键在于分式的分母不能为0.9、C【解析】试题分析:根据等腰三角形的三线合一的性质求解即可.根据等腰三角形的三线合一的性质,可得三边相等,则对这个三角形最准确的判断是正三角形.故选C.考点:等腰三角形的性质点评:等腰三角形的三线合一的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.10、B【分析】根据解题方法进行分析即可.【详解】根据题意,可知这种解答“墓志铭”的方法是利用设未知数,根据已经条件列方程求解,体现的思想方法是方程思想,故选:B.【点睛】本题考查了解题思想中的方程思想,掌握知识点是解题关键.11、D【解析】根据无理数的定义,分别判断,即可得到答案.【详解】解:是无理数;3.14,,0.57是有理数;故选:D.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.12、C【解析】根据三角形的任意两边之和大于第三边,任意两边之差小于第三边,∴5-4<第三边<5+4,∴10<c<18.故选C.二、填空题(每题4分,共24分)13、.【详解】根据题意得:3a+2+a-1=0,解得:a=.考点:平方根.14、或1【分析】分两种情况:①当∠DEF=90°时,证明△CDF∽△BFE,得出,求出BF=,得出CF=BC﹣BF=,得出BE=,即可得出答案;②当∠EDF=90°时,同①得△CDF∽△BFE,得出,求出BF=CD=3,得出CF=BC﹣BF=,得出BE=CF=1,即可得出答案.【详解】解:分两种情况:①当∠DEF=90°时,如图1所示:∵△ABC和△DEF是等腰直角三角形,∴AC=AB=4,∠B=∠C=∠EFD=∠EDF=45°,BC=AB=4,DF=EF,∵AD=1,∴CD=AC﹣AD=3,∵∠EFC=∠EFD+∠CFD=∠B+∠BEF,∴∠CFD=∠BEF,∴△CDF∽△BFE,∴,∴BF=,∴CF=BC﹣BF=4﹣=,∴BE==,∴AE=AB﹣BE=;②当∠EDF=90°时,如图1所示:同①得:△CDF∽△BFE,∴,∴BF=CD=3,∴CF=BC﹣BF=4﹣3=,∴BE=CF=1,∴AE=AB﹣BE=1;综上所述,AE的长是或1;故答案为:或1.【点睛】本题考查了等腰直角三角形的性质、勾股定理、相似三角形的判定与性质等知识;熟练掌握等腰直角三角形的性质和勾股定理,证明三角形相似是解题的关键.15、【解析】根据折叠的性质可得∠DAF=∠BAF=45°,再由矩形性质可得FC=ED=1,然后由勾股定理求出FG即可.【详解】由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=3,EB=AB-AD=1,∵四边形EFCB为矩形,∴FC=BE=1,∵AB∥FC,∴∠GFC=∠DAF=45°,∴GC=FC=1,∴,故答案为:.【点睛】本题考查了折叠变换,矩形的性质是一种对称变换,理解折叠前后图形的大小不变,位置变化,对应边和对应角相等是解决此题的关键.16、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.000000007用科学记数法表示为7×10-1.

故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17、1.【分析】首先利用三角形的中位线定理求得CD的长,然后利用勾股定理求得AD的长,即可求出BC的长.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC.∵OE∥BC,∴OE∥AD,∴OE是△ACD的中位线.∵CE=3cm,∴DC=2OE=2×3=2.∵CO=4,∴AC=3.∵AC⊥CD,∴AD1,∴BC=AD=1.故答案为:1.【点睛】考查了平行四边形的性质,三角形中位线定理,勾股定理,正确的理解平行四边形的性质是解答本题的关键,难度不大.18、【解析】根据加权平均数的计算方法,分别用单价乘以相应的百分比,计算即可得解.【详解】11×60%+18×15%+24×25%=15.1(元),即该店当月销售出水果的平均价格是15.1元,故答案为15.1.【点睛】本题考查扇形统计图及加权平均数,熟练掌握扇形统计图直接反映部分占总体的百分比大小及加权平均数的计算公式是解题的关键.三、解答题(共78分)19、(1),对应扇形的圆心角度数为18;(2)该区八年级学生睡眠时间合格的共有人;(3)该区八年级学生的平均睡眠时间为小时.【分析】(1)根据各部分的和等于1即可求得,然后根据圆心角的度数=360×百分比求解即可;(2)合格的总人数=八年级的总人数×八年级合格人数所占百分比;(3)分别计算B、C、D三组抽取的学生数,然后根据平均数的计算公式即可求得抽取的B、C、D三组学生的平均睡眠时间,即可估计该区八年级学生的平均睡眠时间.【详解】(1)根据题意得:;

对应扇形的圆心角度数为:360×5%=18;(2)根据题意得:(人),则该区八年级学生睡眠时间合格的共有人;(3)∵抽取的D组的学生有15人,∴抽取的学生数为:(人),∴B组的学生数为:(人),C组的学生数为:(人),∴B、C、D三组学生的平均睡眠时间:(小时),该区八年级学生的平均睡眠时间为小时.【点睛】本题主要考查的是扇形统计图的认识以及用样本估计总体,弄清题中的数据是解本题的关键.20、A型机器人每小时搬运kg化工原料,B型机器人每小时搬运kg化工原料.【分析】设B种机器人每小时搬运x千克化工原料,则A种机器人每小时搬运(x+30)千克化工原料,根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等,列方程进行求解即可.【详解】设B型机器人每小时搬运kg化工原料,则A型机器人每小时搬运kg化工原料,由题意得,,解此分式方程得:,经检验是分式方程的解,且符合题意,当时,,答:A型机器人每小时搬运kg化工原料,B型机器人每小时搬运kg化工原料.【点睛】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,解答时根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程是关键.21、(1)当时,=20;当时,=;(2)当时,.【分析】(1)将f=68和f=-4分别代入关系式进行求解即可;(2)把c=10代入关系式进行求解即可.【详解】(1)当时,=20;当时,=;(2)当时,,解得.22、方案三最节省工程费用,理由见解析.【分析】设工程如期完成需天,则甲工程队单独完成需天,乙工程队单独完成需天,依题意可列方程,可求的值,然后分别算出三种方案的价格进行比较即可.【详解】设工程如期完成需天,则甲工程队单独完成需天,乙工程队单独完成需天,依题意可列方程或解得:经检验是方程的根∴工程如期完成需20天,甲工程队单独完成需20天,乙工程队单独完成需25天,在工期不耽误的情况下,可选择方案一或方案三若选择方案一,需工程款万元若选择方案三,需工程款万元故选择方案(3).【点睛】本题主要考查分式方程的应用,熟练掌握分式方程的应用是解题的关键.23、(1)4;(2)见解析【分析】(1)先确定出点A、B、C的位置,再连接AC、CB、AB,然后过点C向x、y轴作垂线,垂足为D、E,根据计算即可;(2)作出点关于x轴的对称点,再连接点即可.【详解】(1)如图,确定出点A、B、C的位置,连接AC、CB、AB,过点C向x、y轴作垂线,垂足为D、E,由图可知:;(2)点关于x轴的对称点为,连接点即为所求,如图所示:【点睛】本题主要考查的是点的坐标与图形的性质,明确是解题的关键.24、1分钟【分析】设二班单独整理这批实验器材需要x分钟,则根据甲的工作量+乙的工作量=1,列方程,求出x的值,再进行检验即可;【详解】解:设二

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论