2025届辽宁省台安县数学八年级第一学期期末经典模拟试题含解析_第1页
2025届辽宁省台安县数学八年级第一学期期末经典模拟试题含解析_第2页
2025届辽宁省台安县数学八年级第一学期期末经典模拟试题含解析_第3页
2025届辽宁省台安县数学八年级第一学期期末经典模拟试题含解析_第4页
2025届辽宁省台安县数学八年级第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届辽宁省台安县数学八年级第一学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.视力表中的字母“”有各种不同的摆放方向,下列图中两个“”不成轴对称的是()A. B. C. D.2.平行四边形、矩形、菱形、正方形都具有的是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等3.一只船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度.如果设船在静水中的速度为x千米/时,可列出的方程是()A.90x+2=60x-2

B.90x-2=60x+2

4.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按图中所标注的数据,计算图中实线所围成的面积S是()A.50 B.62 C.65 D.685.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D,E,AD=3,BE=1,则DE的长是()A.1 B.2 C.3 D.46.如图是边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:)不正确的()A. B.C. D.7.直角坐标系中,我们定义横、纵坐标均为整数的点为整点.在的范围内,直线和所围成的区域中,整点一共有()个.A.12 B.13 C.14 D.158.估计的运算结果应在()A.3到4之间 B.4到5之间 C.5到6之间 D.6到7之间9.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.710.如果点和点关于轴对称,则,的值为()A., B.,C., D.,二、填空题(每小题3分,共24分)11.4的算术平方根是.12.一次函数y=(2m-6)x+5中,y随x的增大而减小,则m的取值范围是________.13.腰长为5,高为4的等腰三角形的底边长为_____.14.如图,在△ABC中,AB=AC,∠A=36°,以B为圆心,BC为半径作弧,交AC于点D,连接BD,则∠ABD=_____°.15.如图,在等腰三角形中,,为边上中点,多点作,交于,交于,若,,则的面积为______.16.已知点分别为四边形的边的中点,,且与不垂直,则四边形的形状是__________.17.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=度18.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.三、解答题(共66分)19.(10分)已知:两个实数满足.(1)求的值;(2)求的值.20.(6分)某射击队准备从甲、乙两名队员中选取一名队员代表该队参加比赛,特为甲、乙两名队员举行了一次选拔赛,要求这两名队员各射击10次.比赛结束后,根据比赛成绩情况,将甲、乙两名队员的比赛成绩制成了如下的统计表:甲队员成绩统计表成绩(环)18910次数(次)5122乙队员成绩统计表成绩(环)18910次数(次)4321(1)经过整理,得到的分析数据如表,求表中的,,的值.队员平均数中位数众数方差甲81.51乙11(2)根据甲、乙两名队员的成绩情况,该射击队准备选派乙参加比赛,请你写出一条射击队选派乙的理由.21.(6分)如图,直线经过点,,直线交轴于点,且与直线交于点,连接.(1)求直线的表达式;(2)求的面积;(3)如图,点是直线上的一动点,连接交线段于点,当与的面积相等时,求点的坐标.22.(8分)问题探究:小明根据学习函数的经验,对函数的图象与性质进行了探究.下面是小明的探究过程,请你解决相关问题:在函数中,自变量x可以是任意实数;如表y与x的几组对应值:x01234y012321a______;若,为该函数图象上不同的两点,则______;如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:该函数有______填“最大值”或“最小值”;并写出这个值为______;求出函数图象与坐标轴在第二象限内所围成的图形的面积;观察函数的图象,写出该图象的两条性质.23.(8分)如图,在方格纸上有三点A、B、C,请你在格点上找一个点D,作出以A、B、C、D为顶点的四边形并满足下列条件.(1)使得图甲中的四边形是轴对称图形而不是中心对称图形.(2)使得图乙中的四边形不是轴对称图形而是中心对称图形.(3)使得图丙中的四边形既是轴对称图形又是中心对称图形.24.(8分)若一个正整数能表示为四个连续正整数的积,即:(其中为正整数),则称是“续积数”,例如:,,所以24和360都是“续积数”.(1)判断224是否为“续积数”,并说明理由;(2)证明:若是“续积数”,则是某一个多项式的平方.25.(10分)如图,在△ABC中,∠BAC是钝角,按要求完成下列画图.(不写作法,保留作图痕迹)(1)用尺规作∠BAC的平分线AE和AB边上的垂直平分线MN;(2)用三角板作AC边上的高BD.26.(10分)某学校共有个一样规模的大餐厅和个一样规模的小餐厅,经过测试,若同时开放个大餐厅个小餐厅,可供名学生就餐.若同时开放个大餐厅、个小餐厅,可供名学生就餐.求个大餐厅和个小餐厅分别可供多少名学生就餐?

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据两个图形成轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形成轴对称,逐一分析即可.【详解】解:A选项中两个“”成轴对称,故本选项不符合题意;B选项中两个“”成轴对称,故本选项不符合题意;C选项中两个“”成轴对称,故本选项不符合题意;D选项中两个“”不成轴对称,故本选项符合题意;故选D.【点睛】此题考查的是两个图形成轴对称的识别,掌握两个图形成轴对称的定义是解决此题的关键.2、A【解析】试题分析:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.故选A.考点:特殊四边形的性质3、A【解析】未知量是速度,有路程,一定是根据时间来列等量关系的.关键描述语是:顺流航行90千米与逆流航行60千米所用的时间相等,等量关系为:顺流航行90千米时间=逆流航行60千米所用的时间.【详解】顺流所用的时间为:90x+2;逆流所用的时间为:60x-2.所列方程为:90x+2【点睛】本题考查由实际问题抽象出分式方程,解题的关键是读懂题意,得到分式方程.4、A【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△AGB,所以AF=BG,AG=EF;同理证得△BGC≌△CHD,GC=DH,CH=BG.故可求出FH的长,然后利用面积的割补法和面积公式即可求出图形的面积.【详解】∵如图,AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90º,∠EAF+∠BAG=90º,∠ABG+∠BAG=90º⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△AGB,∴AF=BG,AG=EF.同理证得△BGC≌△CHD得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16−3×4−6×3=50.故选A.【点睛】此题考查全等三角形的性质与判定,解题关键在于证明△EFA≌△AGB和△BGC≌△CHD.5、B【分析】根据条件可以得出∠E=∠ADC=90,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【详解】∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90,∴∠EBC+∠BCE=90.∵∠BCE+∠ACD=90,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=1.∴DE=EC−CD=1−1=2故选B.【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.6、A【解析】试题分析:正方形的对角线的长是,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14,故答案选A.考点:正方形的性质,勾股定理.7、A【分析】根据题意,画出直线和的函数图像,在的范围内寻找整点即可得解.【详解】根据题意,如下图所示画出直线和在范围内的函数图像,并标出整点:有图可知,整点的个数为12个,故选:A.【点睛】本题主要考查了函数图像的画法及新定义整点的寻找,熟练掌握一次函数图像的画法以及理解整点的含义是解决本题的关键8、A【分析】根据算术平方根的定义由9<15<16可得到31.【详解】解:∵9<15<16,∴31.故选:A.【点睛】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.9、C【详解】试题解析:①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI和△ACI都是等腰三角形.故选C.考点:画等腰三角形.10、A【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数代入计算可解答.【详解】解:由题意得:,解得:a=6,b=4,故答案为:A.【点睛】本题考查的知识点是关于x轴对称的点的坐标之间的关系,当所求的坐标是关于x轴对称时,原坐标的横坐标不变,纵坐标为其相反数;当所求的坐标是关于y轴对称时,原坐标的纵坐标不变,横坐标为其相反数;当所求的坐标是关于原点对称时,原坐标的横、纵坐标均变为其相反数.二、填空题(每小题3分,共24分)11、1.【解析】试题分析:∵,∴4算术平方根为1.故答案为1.考点:算术平方根.12、m<1【解析】解:∵y随x增大而减小,∴k<0,∴2m-6<0,∴m<1.13、6或或.【分析】根据不同边上的高为4分类讨论即可得到本题的答案.【详解】解:①如图1当,,则,∴底边长为6;②如图1.当,时,则,∴,∴,∴此时底边长为;③如图3:当,时,则,∴,∴,∴此时底边长为.故答案为6或或.【点睛】本题考查了勾股定理,等腰三角形的性质,解题的关键是分三种情况分类讨论.14、36【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,又∵BC=BD,∴∠BDC=∠BCD=72°,∴∠DBC=36°,∴∠ABD=∠ABC﹣∠DBC=72°﹣36°=36°,故答案为36【点睛】本题考查等腰三角形的性质.15、【分析】利用等腰直角三角形斜边中点D证明AD=BD,∠DBC=∠A=45,再利用证得∠ADE=∠BDF,由此证明△ADE≌△BDF,得到BC的长度,即可求出三角形的面积.【详解】∵,AB=BC,∴∠A=45,∵为边上中点,∴AD=CD=BD,∠DBC=∠A=45,∠ADB=90,∵,∴∠EDB+∠BDF=∠EDB+∠ADE=90,∴∠ADE=∠BDF,∴△ADE≌△BDF,∴BF==AE=3,∵CF=2,∴AB=BC=BF+CF=5,∴的面积为=,故答案为:.【点睛】此题考查等腰直角三角形的性质,三角形全等的判定及性质.16、菱形【分析】根据三角形的中位线定理和菱形的判定,可得顺次连接对角线相等的四边形各边中点所得四边形是菱形.【详解】如图,∵E、F、G、H分别是线段AB、BC、CD、AD的中点,

∴EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,

根据三角形的中位线的性质知,EH=FG=BD,EF=HG=AC,

又∵AC=BD,

∴EH=FG=EF=HG,

∴四边形EFGH是菱形.

故答案为:菱形.【点睛】此题考查三角形中位线定理和菱形的判定,解题关键在于掌握判定定理.17、80.【分析】根据平行线的性质求出∠C,根据三角形外角性质求出即可.【详解】∵AB∥CD,∠1=45°,∴∠C=∠1=45°.∵∠2=35°,∴∠3=∠2+∠C=35°+45°=80°.故答案为80.18、如果两个角是同一个角的余角,那么这两个角相等【分析】根据“如果”后面接的部分是题设,“那么”后面解的部分是结论,即可解决问题.【详解】命题“同角的余角相等”,可以改写成:如果两个角是同一个角的余角,那么这两个角相等.故答案为:如果两个角是同一个角的余角,那么这两个角相等.【点睛】本题考查命题与定理,解题的关键是掌握“如果”后面接的部分是题设,“那么”后面解的部分是结论.三、解答题(共66分)19、(1)7;(2)-1.【分析】(1)利用完全平方和公式易求解;(2)先通分再利用完全平方和公式即可.【详解】解:(1)(2)【点睛】本题主要考查了完全平方公式,灵活利用完全平方公式进行配方是解题的关键.20、(2)a=8,b=8,c=2;(2)由于乙的中位数大于甲的中位数,根据中位数的意义,乙的高分次数比甲多【分析】(2)根据加权平均数的公式、中位数的定义、方差的公式计算可得;(2)对比平均数、中位数、众数、方差,再根据中位数的意义得出选派乙的依据.【详解】解:(2)乙的平均数为:,乙的中位数为:,甲的方差为:,故a=8,b=8,c=2.(2)由于乙的中位数大于甲的中位数,根据中位数的意义,乙大于等于8分的次数比甲多.【点睛】本题考查了数据的集中趋势,涉及平均数、中位数、众数、方差等计算,解题的关键是理解平均数、中位数、众数、方差的实际意义.21、(1);(2)2;(3)【分析】(1)根据OA、OB以及图象得出A、B的坐标,代入解析式即可得解;(2)联立两个函数解析式得出点D坐标,再根据解析式得出点C坐标,即可得出的面积;(3)首先根据题意设,再由面积之间的等量关系进行转换,得出,列出等式,得出,即可得出点P坐标.【详解】(1)∵,∴∵经过点,∴∴∴直线的表达式为;(2)依题意得:解得∴点的坐标为,∵交轴于点,∴点坐标为,∴;(3)设,∵∴∵,,∴∴∴∴.【点睛】此题主要考查一次函数的综合应用,解题关键是根据题意,找出等量关系.22、(2)0;;(3)①最大值,3;②;③函数图象为轴对称图形,对称轴为y轴;当时,y随x的增大而增大,当时,y随x增大而减小.【解析】将代入函数解析式即可求得a;当时,根据函数解析式可求得b;根据题意画出函数图象,根据图象特征即可求得题目所求.【详解】解:当时,求得;由题意,当时,得,解得:或,所以.函数图象如下图所示:由图知,该函数有最大值3;由图知,函数图象与x轴负半轴的交点为,与y轴正半轴的交点为,因此函数图象在第二象限内所围成的图形的面积为:,由图象知可知函数有如下性质:函数图象为轴对称图形,对称轴为y轴;当时,y随x的增大而增大,当时,y随x增大而减小.故答案为(2)0;;(3)①最大值,3;②;③函数图象为轴对称图形,对称轴为y轴;当时,y随x的增大而增大,当时,y随x增大而减小.【点睛】本题考查了通过列表法和解析式法对函数的性质进行分析,画出函数图象,并研究和总结函数的性质;另外本题还考查了对绝对值的理解.23、见解析【分析】(1)利用轴对称图形的性质得出符合题意的图形即可;(2)利用中心对称图形的性质得出符合题意的图形即可;(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论