版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省南京市鼓楼区第二十九中学八年级数学第一学期期末学业质量监测模拟试题期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是()A. B. C. D.2.下列语句正确的是()A.的平方根是 B.±3是9的平方根C.﹣2是﹣8的负立方根 D.的平方根是﹣23.在中,,则()A. B. C. D.4.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A. B.C. D.5.在下面四个数中,是无理数的是()A.3.1415 B. C. D.6.如图,于,于,若,平分,则下列结论:①;②;③;④,正确的有()个A. B. C. D.7.若a+b=3,ab=-7,则的值为()A.- B.- C.- D.-8.一次函数与的图象如图所示,下列说法:①;②函数不经过第一象限;③不等式的解集是;④.其中正确的个数有()
A.4 B.3 C.2 D.19.下列各数中,是无理数的是().A. B. C. D.010.下列命题中,是假命题的是()A.对顶角相等B.同旁内角互补C.两点确定一条直线D.角平分线上的点到这个角的两边的距离相等二、填空题(每小题3分,共24分)11.代数式的最大值为______,此时x=______.12.某种病毒的直径是0.00000008米,这个数据用科学记数法表示为__________米.13.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为______.14.在△ABC中,∠A=60°,∠B=∠C,则∠B=______.15.如图,在平面直角坐标系中,一次函数y=2x﹣4的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是_____.16.定义:到三角形两边距离相等的点叫做三角形的准内心.已知在中,,,,点是的准内心(不包括顶点),且点在的某条边上,则的长为______.17.已知a+b=1,ab=,则a3b2a2b2ab3(__________).18.因式分解:=.三、解答题(共66分)19.(10分)如图,△ABC中,∠B=2∠C.(1)尺规作图:作AC的垂直平分线,交AC于点D,交BC于点E;(2)连接AE,求证:AB=AE20.(6分)如图所示,在平面直角坐标系xOy中,已知点(1)在图作出关于y轴的称图形(2)若将向右移2个单位得到,则点A的对应点的坐标是
.21.(6分)如图AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.22.(8分)证明:最长边上的中线等于最长边的一半的三角形是直角三角形.23.(8分)某广场用如图1所示的同一种地砖拼图案,第一次拼成的图案如图2所示,共用地砖4块;第2次拼成的图案如图3所示,共用地砖;第3次拼成的图案如图4所示,共用地砖,….(1)直接写出第4次拼成的图案共用地砖________块;(2)按照这样的规律,设第次拼成的图案共用地砖的数量为块,求与之间的函数表达式24.(8分)某天,一蔬菜经营户用1200元钱按批发价从蔬菜批发市场买了西红柿和豆角共400kg,然后在市场上按零售价出售,西红柿和豆角当天的批发价和零售价如表所示:品名西红柿豆角批发价(单位:元/kg)2.43.2零售价(单位:元/kg)3.85.2(1)该经营户所批发的西红柿和豆角的质量分别为多少kg?(2)如果西红柿和豆角全部以零售价售出,他当天卖出这些西红柿和豆角赚了多少钱?25.(10分)问题情景:如图1,在同一平面内,点和点分别位于一块直角三角板的两条直角边,上,点与点在直线的同侧,若点在内部,试问,与的大小是否满足某种确定的数量关系?(1)特殊探究:若,则_________度,________度,_________度;(2)类比探索:请猜想与的关系,并说明理由;(3)类比延伸:改变点的位置,使点在外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出,与满足的数量关系式.26.(10分)按要求计算:(1)计算:(2)因式分解:①②(3)解方程:
参考答案一、选择题(每小题3分,共30分)1、A【分析】设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x、y的二元一次方程组,进而得到答案.【详解】解:设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x、y的二元一次方程组为:,故选:A;【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.2、B【分析】依据立方根、平方根定义和性质回答即可.【详解】解:A、2的平方根是,故A错误;B、±3是9的平方根,故B正确;C、﹣2是﹣8的立方根,故C错误;D、的平方根是±2,故D错误.故选:B.【点睛】本题考查的是平方根,立方根的含义,及求一个数的平方根与立方根,掌握以上知识是解题的关键.3、A【解析】根据三角形的内角和为180°,即可解得∠A的度数.【详解】∵三角形的内角和为180°∴∵∴故答案为:A.【点睛】本题考查了三角形内角的度数问题,掌握三角形的内角之和为180°是解题的关键.4、D【解析】解:根据给出的图象上的点的坐标,(0,-1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x-1,y=-x+2,因此所解的二元一次方程组是故选D.5、C【解析】根据无理数的定义解答即可.【详解】解:在3.1415、、、中,无理数是:.故选:C.【点睛】本题考查了无理数的定义,属于应知应会题型,熟知无理数的概念是关键.6、D【分析】根据角平分线的性质即可判断①;根据HL可得Rt△DBE≌Rt△DCF,进而可得∠DBE=∠C,BE=CF,于是可判断②;根据平角的定义和等量代换即可判断③;根据HL可得Rt△ADE≌Rt△ADF,于是可得AE=AF,进一步根据线段的和差关系即可判断④,从而可得答案.【详解】解:∵平分,于,于,∴,DE=DF,故①正确;在Rt△DBE和Rt△DCF中,∵DE=DF,,∴Rt△DBE≌Rt△DCF(HL),∴∠DBE=∠C,BE=CF,故②正确;∵,∴,故③正确;在Rt△ADE和Rt△ADF中,∵DE=DF,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴,故④正确;综上,正确的结论是:①②③④,有4个.故选:D.【点睛】本题主要考查了角平分线的性质、全等三角形的判定和性质等知识,属于常考题型,熟练掌握上述知识是解题的关键.7、C【解析】试题解析:原式=,∵a+b=3,ab=-7,∴原式=.故选C.8、A【分析】仔细观察图象:①a的正负看函数y1=ax+b图象从左向右成何趋势,b的正负看函数y1=ax+b图象与y轴交点即可;②c的正负看函数y2=cx+d从左向右成何趋势,d的正负看函数y2=cx+d与y轴的交点坐标;③以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;④看两直线都在x轴上方的自变量的取值范围.【详解】由图象可得:a<0,b>0,c>0,d<0,∴ab<0,故①正确;函数y=ax+d的图象经过第二,三,四象限,即不经过第一象限,故②正确,由图象可得当x<3时,一次函数y1=ax+b图象在y2=cx+d的图象上方,∴ax+b>cx+d的解集是x<3,故③正确;∵一次函数y1=ax+b与y2=cx+d的图象的交点的横坐标为3,∴3a+b=3c+d∴3a−3c=d−b,∴a−c=(d−b),故④正确,故选:A.【点睛】本题考查了一次函数与一元一次不等式,一次函数的图象与性质,利用数形结合是解题的关键.9、C【分析】根据无理数的定义解答.【详解】=2,是有理数;-1,0是有理数,π是无理数,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10、B【解析】试题分析:A.对顶角相等,所以A选项为真命题;B.两直线平行,同旁内角互补,所以B选项为假命题;C.两点确定一条直线,所以C选项为真命题;D.角平分线上的点到这个角的两边的距离相等,所以D选项为真命题.故选B.考点:命题与定理.二、填空题(每小题3分,共24分)11、2±1.【分析】根据算术平方根的性质可以得到≥0,即最小值是0,据此即可确定原式的最大值.【详解】∵0,∴当x=±1时,有最小值0,则当x=±1,2有最大值是2.故答案为:2,±1.【点睛】本题考查了二次根式性质,理解≥0是关键.12、【分析】把一个数表示成a与10的n次幂相乘的形式这种记数法叫做科学记数法,以此可得.【详解】,故答案为:1×10-1.【点睛】本题考查科学记数法的知识点,熟练掌握科学记数法的记数法是本题的关键.13、125°【详解】解:Rt△ABE中,∠ABE=20°,∴∠AEB=70°,由折叠的性质知:∠BEF=∠DEF,而∠BED=180°﹣∠AEB=110°,∴∠BEF=55°,易知∠EBC=∠D=∠BC′F=∠C=90°,∴BE∥C′F,∴∠EFC′=180°﹣∠BEF=125°.故答案为125°.【点睛】本题考查翻折变换(折叠问题).14、60°【分析】根据条件由三角形内角和可得∠A+∠B+∠C=180°;接下来根据∠A=60°,∠B=∠C,进而得到∠B的度数.【详解】解:∵∠A、∠B、∠C是△ABC的三个内角,∴∠A+∠B+∠C=180°.∵∠A=60°,∠B=∠C,∴∠B=60°,故答案为:60°.【点睛】本题主要考查了三角形内角和定理的运用,解题时注意三角形内角和等于180°.15、y=x﹣1【分析】根据已知条件得到A(2,0),B(0,﹣1),求得OA=2,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,得到AB=AF,根据全等三角形的性质得到AE=OB=1,EF=OA=2,求得F(6,﹣2),设直线BC的函数表达式为:y=kx+b,解方程组于是得到结论.【详解】解:∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣1,令y=0,则x=2,∴A(2,0),B(0,﹣1),∴OA=2,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=15°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO=∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△FAE(AAS),∴AE=OB=1,EF=OA=2,∴F(6,﹣2),设直线BC的函数表达式为:y=kx+b,∴,解得,∴直线BC的函数表达式为:y=x﹣1,故答案为:y=x﹣1.【点睛】本题考查了一次函数图象与几何变换,待定系数法求函数的解析式,全等三角形的判定和性质,正确的作出辅助线是解题的关键.16、或或3【分析】分三种情形①点P在AB边上,②点P在AC边上,③点P在BC边上,分别讨论计算即可.【详解】解:∵,,,∴,如图3中,当点在边上时,∵点是的准内心,∴,作于,于F,∵C平分∠ACB,∴PE=PF,∠PCE=45°,∴△CPE是等腰直角三角形.∵,∴PE=.∴,∴;如图4中,当点在边上时,作于,设,∵点是的准内心,∴,∵,,∴,在△BCP和△BEP中∵,∠BCP=∠BEP=90°,BP=BP,∴△BCP≌△BEP,∴,∴,∴,解得:;如图5中,当点在边上时,与当点在边上时同样的方法可得;故答案为:或或3.【点睛】本题考查角平分线的性质、勾股定理、等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的准内心的定义等知识,解题的关键是理解题意,学会分类讨论,属于中考常考题型.17、【分析】把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.【详解】解:a3b−2a2b2+ab3,=ab(a2−2ab+b2),=ab(a−b)2,=ab[(a+b)2−4ab]把a+b=1,ab=代入得:原式=×(12−4×)=,故答案为:.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,熟练掌握运算法则是解题的关键.18、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式a后继续应用平方差公式分解即可:.三、解答题(共66分)19、(1)见解析;(2)见解析.【分析】(1)分别以A、C为圆心,大于AC长为半径画弧,两弧交于两点,过两点画直线,交BC边于点E,交AC边于点D;
(2)由已知条件,利用线段的垂直平分线的性质,得到AE=CE,所以∠EAC=∠C.于是可得∠AEB=2∠C,故∠AEB=∠B,所以AB=AE.【详解】解:(1)如图所示,DE即为所求;
(2)∵DE垂直平分AC,
∴AE=CE.
∴∠EAC=∠C.∴∠AEB=2∠C.∵∠B=2∠C.
∴∠AEB=∠B.∴AB=AE.【点睛】此题主要考查了线段垂直平分线的作法和性质,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等.20、(1)作图见解析;(2)(1,2)【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C向右平移2个单位的对应点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出点A′的坐标.【详解】(1)△A1B1C1如图所示;(2)△A′B′C′如图所示,A′(1,2);【点睛】本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.21、(1)证明见解析;(2)互相垂直,证明见解析【分析】(1)根据AAS推出△ACD≌△ABE,根据全等三角形的性质得出即可;(2)证Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根据等腰三角形的性质推出即可.【详解】(1)证明:∵CD⊥AB,BE⊥AC,
∴∠ADC=∠AEB=90°,
△ACD和△ABE中,
∵∴△ACD≌△ABE(AAS),
∴AD=AE.
(2)猜想:OA⊥BC.
证明:连接OA、BC,
∵CD⊥AB,BE⊥AC,
∴∠ADC=∠AEB=90°.
在Rt△ADO和Rt△AEO中,
∵
∴Rt△ADO≌Rt△AEO(HL).
∴∠DAO=∠EAO,
又∵AB=AC,
∴OA⊥BC.22、证明见解析.【分析】如图,在△ABC中,AB是最长边,CD是边AB的中线,可得,再根据最长边上的中线等于最长边的一半可得,根据等边对等角以及三角形内角和定理即可得证.【详解】证明:如图,在△ABC中,AB是最长边,CD是边AB的中线∵CD是边AB的中线∴∵最长边上的中线等于最长边的一半∴∴∵∴∴△ABC是直角三角形∴最长边上的中线等于最长边的一半的三角形是直角三角形.【点睛】本题考查了直角三角形的证明问题,掌握直角三角形的性质、等边对等角、三角形内角和定理、中线的性质是解题的关键.23、(1)40;(2).【分析】(1)根据拼成图案的地砖块数规律,即可得到答案;(2)根据,,,,……,进而得到与之间的函数表达式.【详解】(1)∵第一次拼成的图案,共用地砖4块;第2次拼成的图案,共用地砖;第3次拼成的图案,共用地砖,…,∴第4次拼成的图案,共用地砖.故答案是:40;(2)第1次拼成如图2所示的图案共用4块地砖,即,第2次拼成如图3所示的图案共用12块地砖,即,第3次拼成如图4所示的图案共用24块地砖,即,第4次拼成的图案共用40块地砖,即,……第次拼成的图案共用地砖:,∴与之间的函数表达式为:.【点睛】本题主要考查探究图案与数的规律,找到图案与数的规律,是解题的关键.24、(1);(2)当天卖这些西红柿和豆角赚了元【分析】(1)设该经营户批发西红柿,批发豆角.根据题意列出二元一次方程组,解方程组即可得到答案;(2)根据利润=零售额成本,即可求出当天的利润.【详解】解:设该经营户批发西红柿,批发豆角.由题意得:,解得:答:该经营户批发西红柿,批发豆角.(元);答:当天卖这些西红柿和豆角赚了元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.25、(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,证明见解析;(3)结论不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【分析】(1)根据三角形内角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;(2)根据三角形内角和定理进行等量转换,即可得出∠ABP+∠ACP=90°-∠A;(3)按照(2)中同样的方法进行等量转换,求解即可判定.【详解】(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,∠ABP+∠ACP=∠ABC+∠ACB-(∠PBC+∠PCB)=125°-90°=35度;(2)猜想:∠ABP+∠ACP=90°-∠A;证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 5.3 人体内物质的运输
- 办公场所与设施维护管理制度
- 企业商标管理制度
- 急救医疗流程规范制度
- 算法设计与分析 课件 10.3.3-综合应用-最短路径问题-贝尔曼福特算法
- 2024年来宾道路客运从业资格证考试模拟试题
- 2024年西安客运从业资格证考试考什么题型
- 2024年杭州客运急救知识
- 2024年重庆客运从业资格证实际操作试题答案解析
- 吉林艺术学院《中外动画史》2021-2022学年第一学期期末试卷
- 心脏骤停与心源性猝死的急救与护理课件
- 2024年中考地理二轮复习专题-地理实践与跨学科主题学习(解析版)
- 个人向纪检委写悔过书集合3篇
- 代购居间合同范本
- 音乐家舒伯特课件
- 营业线施工有关事故案例及分析
- 幼儿园幼儿膳食营养分析报告
- 品牌提升策划方案
- 高中新课程建设方案
- 医学案例分析模板
- 大隐静脉射频消融手术
评论
0/150
提交评论