版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省恩施土家族苗族自治州来凤县数学八上期末教学质量检测试题质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点(2,3)关于y轴对称的点的坐标是()A.(﹣2,﹣3) B.(2,﹣3) C.(﹣2,3) D.(2,3)2.要使分式有意义,则的取值应满足()A. B. C. D.3.如果点P在第二象限,那么点Q在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.下列图形既是中心对称又是轴对称图形的是()A.平行四边形和矩形 B.矩形和菱形C.正三角形和正方形 D.平行四边形和正方形5.如图,圆柱形容器的高为0.9m,底面周长为1.2m,在容器内壁离容器底部0.3m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.2m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为()A.1m B.1.1m C.1.2m D.1.3m6.下列四个式子中能因式分解的是()A.x2﹣x+1 B.x2+x C.x3+x﹣ D.x4+17.点M(3,-4)关于y轴的对称点的坐标是()A.(3,4) B.(-3,4) C.(-3,-4) D.(-4,3)8.等腰三角形的两边长为3,7,则其腰长为()A.6 B.3或7 C.3 D.79.下列约分正确的有()(1);(2);(3);(4)A.0个 B.1个 C.2个 D.3个10.甲、乙、丙、丁四人进行射箭测试,每人次射箭成绩的平均数都是环,方差分别是,,,,则本次测试射箭成绩最稳定的是()A.甲 B.乙 C.丙 D.丁11.下列分式中,是最简分式的是()A. B. C. D.12.下列各式中与是同类二次根式的是()A. B. C. D.二、填空题(每题4分,共24分)13.实数,,,,中,其中无理数出现的频数是______________.14.如图,圆柱形容器中,高为1m,底面周长为4m,在容器内壁离容器底部0.4m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为______m(容器厚度忽略不计).15.用反证法证明“等腰三角形的底角是锐角”时,首先应假设_____16.已知函数与的图像的一个交点坐标是(1,2),则它们的图像的另一个交点的坐标是____.17.如图,在中,,,是中点,则点关于点的对称点的坐标是______.18.分解因式:2x2﹣8=_____________三、解答题(共78分)19.(8分)已知等边△AOB的边长为4,以O为坐标原点,OB所在直线为x轴建立如图所示的平面直角坐标系.(1)求点A的坐标;(2)若直线y=kx(k>0)与线段AB有交点,求k的取值范围;(3)若点C在x轴正半轴上,以线段AC为边在第一象限内作等边△ACD,求直线BD的解析式.20.(8分)某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A的数量关系,并证明.21.(8分)如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD.(1)求证:OP=OF;(2)求AP的长.22.(10分)(材料阅读)我们曾解决过课本中的这样一道题目:如图,四边形是正方形,为边上一点,延长至,使,连接.……提炼1:绕点顺时针旋转90°得到;提炼2:;提炼3:旋转、平移、轴对称是图形全等变换的三种方式.(问题解决)(1)如图,四边形是正方形,为边上一点,连接,将沿折叠,点落在处,交于点,连接.可得:°;三者间的数量关系是.(2)如图,四边形的面积为8,,,连接.求的长度.(3)如图,在中,,,点在边上,.写出间的数量关系,并证明.23.(10分)先化简,再求值:(1﹣)÷,其中a=(3﹣π)0+()﹣1.24.(10分)在正方形ABCD中,BD是一条对角线,点P在CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QM⊥BD于M,连接AM,PM(如图1).(1)判断AM与PM的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立.请说明理由.25.(12分)如图,已知,,,射线,动点在线段上(不与点,重合),过点作交射线于点,连接,若,判断的形状,并加以证明.26.化简求值:(1)已知,求的值.(2)已知,求代数式的值.
参考答案一、选择题(每题4分,共48分)1、C【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y轴对称的点的坐标是(﹣2,3).故选C.【点睛】本题考查关于x轴、y轴对称的点的坐标,利用数形结合思想解题是关键.2、A【解析】根据分式有意义的条件是分母不为0列出不等式,解可得自变量x的取值范围,【详解】解:由题意得,x-5≠0,
解得,x≠5,
故选:A.【点睛】本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.3、C【解析】根据第二象限的横坐标小于零可得m的取值范围,进而判定Q点象限.【详解】解:由点P在第二象限可得m<0,再由-3<0和m<0可知Q点在第三象限,故选择C.【点睛】本题考查了各象限内坐标的符号特征.4、B【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A、矩形既是轴对称图形,也是中心对称图形,平行四边形不是轴对称图形,是中心对称图形.故错误;B、矩形、菱形既是轴对称图形,也是中心对称图形.故正确;C、等边三角形是轴对称图形,不是中心对称图形.故错误;D、正方形既是轴对称图形,也是中心对称图形,平行四边形不是轴对称图形,是中心对称图形.故错误.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、A【分析】将容器侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如图,将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,由题意知,A′D=0.6m,A′E=AE=0.2m,∴BD=0.9-0.3+0.2=0.8m,∴A′B===1(m).故选:A.【点睛】本题考查了平面展开-最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.6、B【分析】直接利用提取公因式法以及因式分解的意义分别判断得出答案.【详解】解:A、x2﹣x+1,不能因式分解,故本选项不合题意;B、能运用提取公因式法分解因式,,故本选项符合题意;C、x3+x﹣,不能因式分解,故本选项不合题意;D、x4+1,不能因式分解,故本选项不合题意;故选:B.【点睛】本题考查了因式分解的方法,以及根据因式分解定义判定所给式子能不能进行因式分解,掌握因式分解的方法是解题的关键.7、C【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y轴的对称点P′的坐标是(−x,y).【详解】∵点M(3,−4),∴关于y轴的对称点的坐标是(−3,−4).故选:C.【点睛】此题主要考查了关于x轴、y轴对称点的坐标特点,熟练掌握关于坐标轴对称的特点是解题关键.8、D【分析】根据等腰三角形的定义、三角形的三边关系定理即可得.【详解】由等腰三角形的定义得:其腰长为3或7,(1)当腰长为3时,这个等腰三角形的三边长为,此时,不满足三角形的三边关系定理,即其腰长不能为3;(2)当腰长为7时,这个等腰三角形的三边长为,此时,满足三角形的三边关系定理;综上,这个等腰三角形的腰长为7,故选:D.【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,熟练掌握等腰三角形的定义是解题关键.9、B【分析】原式各项约分得到结果,即可做出判断.【详解】(1),故此项正确;(2),故此项错误;(3),故此项错误;(4)不能约分,故此项错误;综上所述答案选B【点睛】此题考查了约分,约分的关键是找出分子分母的公因式.10、D【分析】根据方差的意义先比较出甲、乙、丙、丁四人谁的方差最小,则谁的射箭成绩最稳定.【详解】∵甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是9.1环,方差分别是,,,,丁的方差最小,∴射箭成绩最稳定的是丁.故选:D.【点睛】此题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在解题时要能根据方差的意义和本题的实际,得出正确结论是本题的关键.11、B【分析】根据最简分式的定义进行判断即可得解.【详解】解:A.,故本选项不是最简分式;B.的分子、分母没有公因数或公因式,故本选项是最简分式;C.,故本选项不是最简分式;D.,故本选项不是最简分式.故选:B【点睛】本题考查了最简分式,熟记最简分式的定义是进行正确判断的关键.12、C【分析】先将选项中的二次根式化为最简二次根式,然后根据同类二次根式的被开方数相同判断即可得出答案.【详解】解:A、与被开方数不相同,不是同类二次根式,故本选项错误;B、与被开方数不相同,不是同类二次根式,故本选项错误;C、与的被开方数相同,是同类二次根式,故本选项正确;D、与被开方数不相同,不是同类二次根式,故本选项错误;故选:C【点睛】本题考查了同类二次根式,解题的关键是二次根式的化简.二、填空题(每题4分,共24分)13、【解析】根据题意可知无理数有:和π,因此其出现的频数为2.故答案为2.14、【分析】将容器侧面展开,建立A关于EC的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.
∵高为1m,底面周长为4m,在容器内壁离容器底部0.4m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,
∴A′D==2(m),BD=1+0.6-0.4=1.2(m),
∴在直角△A′DB中,A′B=(m),故答案是:.【点睛】本题考查了平面展开-最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.15、等腰三角形的底角是钝角或直角【解析】根据反证法的第一步:假设结论不成立设,可以假设“等腰三角形的两底都是直角或钝角”.
故答案是:等腰三角形的两底都是直角或钝角.16、(-1,-2)【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【详解】∵函数与的图像都是中心对称图形,∴函数与的图像的一个交点坐标是(1,2)关于原点对称的点是(-1,-2),∴它们的图像的另一个交点的坐标是(-1,-2).故答案是:(-1,-2).【点睛】本题主要考查了反比例函数图象的中心对称性.关于原点对称的两个点的横、纵坐标分别互为相反数.17、().【分析】过点A作AD⊥OB于D,然后求出AD、OD的长,从而得到点A的坐标,再根据中点坐标公式,求出点C的坐标,然后利用中点坐标公式求出点O关于点C的对称点坐标,即可.【详解】如图,过点A作AD⊥OB于D,∵OA=OB=3,∠AOB=45°,∴AD=OD=3÷=,∴点A(,),B(3,0),∵C是AB中点,∴点C的坐标为(),∴点O关于点C的对称点的坐标是:()故答案为:().【点睛】本题主要考查图形与坐标,掌握等腰直角三角形的三边之比以及线段中点坐标公式,是解题的关键.18、2(x+2)(x﹣2)【分析】先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.三、解答题(共78分)19、(1)点A的坐标为(2,2);(2)0<k≤;(3)y=x﹣4【分析】(1)如下图所示,过点A作AD⊥x轴于点D,则AD=OAsin∠AOB=4sin60°=2,同理OA=2,即可求解;(2)若直线y=kx(k>0)与线段AB有交点,当直线过点A时,将点A坐标代入直线的表达式得:2k=2,解得:k=,即可求解;(3)证明△ACO≌△ADB(SAS),而∠DBC=180°﹣∠ABO﹣∠ABD=180°﹣60°﹣60°=60°,即可求解.【详解】解:(1)如下图所示,过点A作AD⊥x轴于点D,则AD=OAsin∠AOB=4sin60°=,同理OA=2,故点A的坐标为(2,2);(2)若直线y=kx(k>0)与线段AB有交点,当直线过点A时,将点A坐标代入直线的表达式得:2k=2,解得:k=,直线OB的表达式为:y=0,而k>0,故:k的取值范围为:0<k≤;(3)如下图所示,连接BD,∵△OAB是等边三角形,∴AO=AB,∵△ADC为等边三角形,∴AD=AC,∠OAC=∠OAB+∠CAB=60°+∠CAB=∠DAC+∠CAB=∠DAB,∴△ACO≌△ADB(SAS),∴∠AOB=∠ABD=60°,∴∠DBC=180°﹣∠ABO﹣∠ABD=180°﹣60°﹣60°=60°,故直线BD表达式的k值为tan60°=,设直线BD的表达式为:y=x+b,将点B(4,0)代入上式得解得:b=﹣4,故:直线BD的表达式为:y=x﹣4.【点睛】本题主要考查了全等三角形的判定及性质,等边三角形的性质及特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.20、(1)∠BPC=122°;(2)∠BEC=;(3)∠BQC=90°﹣∠A,证明见解析【分析】(1)根据三角形的内角和化为角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠E与∠1表示出∠2,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC与∠ECB,然后再根据三角形的内角和定理列式整理即可得解.【详解】解:(1)、分别平分和,,,,,,,,故答案为:;(2)和分别是和的角平分线,,,又是的一外角,,,是的一外角,;(3),,,,,结论:.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.21、(1)证明见解析;(2)4.1.【分析】(1)由折叠的性质得出∠E=∠A=90°,从而得到∠D=∠E=90°,然后可证明△ODP≌△OEF,从而得到OP=OF;(2)由△ODP≌△OEF,得出OP=OF,PD=FE,从而得到DF=PE,设AP=EP=DF=x,则PD=EF=6-x,DF=x,求出CF、BF,根据勾股定理得出方程,解方程即可.【详解】(1)∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1.由翻折的性质可知:EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEF中,,∴△ODP≌△OEF(ASA).∴OP=OF.(2)∵△ODP≌△OEF(ASA),∴OP=OF,PD=EF.∴DF=EP.设AP=EP=DF=x,则PD=EF=6-x,CF=1-x,BF=1-(6-x)=2+x,在Rt△FCB根据勾股定理得:BC2+CF2=BF2,即62+(1-x)2=(x+2)2,解得:x=4.1,∴AP=4.1.22、(1)45,;(2)4;(3),见解析【分析】(1)根据折叠的性质可得DG=DA=DC,根据HL证明△DAF≌△DGF,得到AF=GF,,故可求解;(2)延长到,使,连接,证明,再得到△AEC为等腰直角三角形,根据四边形的面积与的面积相等,即可利用等腰直角三角形求出AC的长;(3)将绕点逆时针旋转90°得到,连接,可证明.得到,可求得,得到,由即可证明.【详解】解:(1)∵将沿折叠得到△GDE,根据折叠的性质可得DG=DA=DC,∵,DF=DF,∴Rt△DAF≌Rt△DGF,∴AF=GF,,∴=;EF=FG+EG=AF+CE,即故答案为:45°,;(2)如图,延长到,使,连接.∵∴又∴又BC=DE,∴,∴,.∴.∴为等腰直角三角形,∵四边形的面积为8,∴的面积为8.∴.解得,.(-4舍去)(3),理由如下:如图:将绕点逆时针旋转90°得到,连接.∴,∵,∴∴又CE=CE,CD=CH∴.∴.∵旋转角=90°,∴.∴.又,∴.【点睛】此题主要考查旋转的性质,等腰三角形的性质与判定,解题的关键根据题意构造辅助线,利用等腰三角形、全等三角形的判定与性质进行求解.23、【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则计算,约分得到最简结果,把a的值代入计算即可求出值.【详解】解:原式=当a=1+4=5时,原式=.【点睛】本题考查了分式的化简求值,解题的关键是熟练掌握分式运算法则.24、(1)AM=PM,AM⊥PM,证明见解析;(2)成立,理由见解析.【分析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国电子政务行业发展趋势及投资商业模式分析报告
- 2024-2030年中国用于个人护理的紫外线B过滤剂行业前景动态与发展方向预测报告
- 2024-2030年中国生物降解塑料行业发展需求及投资风险研究报告
- 2024-2030年中国瓦斯发电行业运行形势发展规划分析报告版
- 2024-2030年中国燕麦油产品行业市场深度调研及发展趋势与投资前景预测研究报告
- 2024-2030年中国煤矿用隔爆型潜污水电泵项目可行性研究报告
- 2024年木板材加工项目提案报告
- 2024-2030年中国烟用配方物质融资商业计划书
- 2024-2030年中国炼印染丝织品行业市场运营模式及未来发展动向预测报告
- 《长江经济带医疗服务利用状况及影响因素研究》
- 第七节-感染性心内膜炎病人的护理课件
- 装修常用数据手册(空间布局和尺寸)
- 23版概论第八章 科学发展观
- 矿产资源“三率”指标要求+第14部分:饰面石材和建筑用石料矿产
- 维保单位变更申请表格
- 医院陪护中心运营方案
- 大学英语四级真题阅读练习10套(附参考答案)
- 国家慢性肾病临床医学研究中心
- 2023年汉字听写大会汉字听写知识竞赛题库及答案(共三套)
- 码垛机械手结构设计
- 沪昆高速铁路
评论
0/150
提交评论