四川省巴中市南江县2024-2025学年初三寒假网上测试数学试题含解析_第1页
四川省巴中市南江县2024-2025学年初三寒假网上测试数学试题含解析_第2页
四川省巴中市南江县2024-2025学年初三寒假网上测试数学试题含解析_第3页
四川省巴中市南江县2024-2025学年初三寒假网上测试数学试题含解析_第4页
四川省巴中市南江县2024-2025学年初三寒假网上测试数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省巴中市南江县2024-2025学年初三寒假网上测试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为()A. B.C. D.2.在△ABC中,∠C=90°,AC=9,sinB=,则AB=(

)A.15

B.12

C.9

D.63.已知反比例函数y=﹣,当1<x<3时,y的取值范围是()A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣24.下列图标中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.如图,在正方形ABCD中,AB=,P为对角线AC上的动点,PQ⊥AC交折线A﹣D﹣C于点Q,设AP=x,△APQ的面积为y,则y与x的函数图象正确的是()A. B.C. D.6.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个 B.15个 C.13个 D.12个7.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为()。A.70° B.65° C.50° D.25°8.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为()A.2 B.3 C.4 D.69.在下列函数中,其图象与x轴没有交点的是()A.y=2x B.y=﹣3x+1 C.y=x2 D.y=10.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位 B.向右平移3个单位C.向上平移3个单位 D.向下平移1个单位二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,AB∥CD,点E是CD上一点,∠AEC=40°,EF平分∠AED交AB于点F,则∠AFE=___度.12.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为______.13.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF=__.14.分解因式:=__________________.15.如图,AE是正八边形ABCDEFGH的一条对角线,则∠BAE=°.16.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).三、解答题(共8题,共72分)17.(8分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?18.(8分)如图,已知直线AB经过点(0,4),与抛物线y=x2交于A,B两点,其中点A的横坐标是.求这条直线的函数关系式及点B的坐标.在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?19.(8分)为营造浓厚的创建全国文明城市氛围,东营市某中学委托制衣厂制作“最美东营人”和“最美志愿者”两款文化衫.若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需145元.(1)求“最美东营人”和“最美志愿者”两款文化衫每件各多少元?(2)若该中学要购进“最美东营人”和“最美志愿者”两款文化衫共90件,总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,那么该中学有哪几种购买方案?20.(8分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.21.(8分)如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.22.(10分)已知:不等式≤2+x(1)求不等式的解;(2)若实数a满足a>2,说明a是否是该不等式的解.23.(12分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.24.现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。(1)请你通过列表(或树状图)分别计算乘积是2的倍数和3的倍数的概率;(2)你认为这个游戏公平吗?为什么?若你认为不公平,请你修改得分规则,使游戏对双方公平.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】

根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.本题主要考查二次函数、反比例函数的图象特点.2、A【解析】

根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故选A3、D【解析】

根据反比例函数的性质可以求得y的取值范围,从而可以解答本题.【详解】解:∵反比例函数y=﹣,∴在每个象限内,y随x的增大而增大,∴当1<x<3时,y的取值范围是﹣6<y<﹣1.故选D.本题考查了反比例函数的性质,解答本题的关键是明确题意,求出相应的y的取值范围,利用反比例函数的性质解答.4、D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别5、B【解析】∵在正方形ABCD中,AB=,∴AC=4,AD=DC=,∠DAP=∠DCA=45o,当点Q在AD上时,PA=PQ,∴DP=AP=x,∴S=;当点Q在DC上时,PC=PQCP=4-x,∴S=;所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,故选B.【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在AP、DC上这两种情况.6、D【解析】

由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】解:设白球个数为:x个,

∵摸到红色球的频率稳定在25%左右,

∴口袋中得到红色球的概率为25%,

∴,

解得:x=12,

经检验x=12是原方程的根,

故白球的个数为12个.

故选:D.本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键.7、C【解析】

首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【详解】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故选:C.此题考查了长方形的性质与折叠的性质.此题比较简单,解题的关键是注意数形结合思想的应用.8、B【解析】

根据三角形的中位线等于第三边的一半进行计算即可.【详解】∵D、E分别是△ABC边AB、AC的中点,∴DE是△ABC的中位线,∵BC=6,∴DE=12故选B.本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.9、D【解析】

依据一次函数的图象,二次函数的图象以及反比例函数的图象进行判断即可.【详解】A.正比例函数y=2x与x轴交于(0,0),不合题意;B.一次函数y=-3x+1与x轴交于(,0),不合题意;C.二次函数y=x2与x轴交于(0,0),不合题意;D.反比例函数y=与x轴没有交点,符合题意;故选D.10、D【解析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11、70°.【解析】

由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.【详解】∵∠AEC=40°,∴∠AED=180°﹣∠AEC=140°,∵EF平分∠AED,∴,又∵AB∥CD,∴∠AFE=∠DEF=70°.故答案为:70本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.12、【解析】

利用勾股定理求出斜边长,再利用面积法求出斜边上的高即可.【详解】解:∵直角三角形的两条直角边的长分别为5,12,∴斜边为=13,∵三角形的面积=×5×12=×13h(h为斜边上的高),∴h=.故答案为:.考查了勾股定理,以及三角形面积公式,熟练掌握勾股定理是解本题的关键.13、15°【解析】

根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【详解】解答:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形.∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.由圆周角定理得,故答案为15°.14、【解析】

原式提取2,再利用完全平方公式分解即可.【详解】原式先考虑提公因式法,再用公式法进行分解,最后考虑十字相乘,差项补项等方法.15、67.1【解析】试题分析:∵图中是正八边形,∴各内角度数和=(8﹣2)×180°=1080°,∴∠HAB=1080°÷8=131°,∴∠BAE=131°÷2=67.1°.故答案为67.1.考点:多边形的内角16、甲.【解析】乙所得环数的平均数为:=5,S2=[+++…+]=[++++]=16.4,甲的方差<乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.三、解答题(共8题,共72分)17、(1)y=150﹣x;(2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】

(1)若购买x双(10<x<1),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则1≤100﹣x<75;当40<x<1时,则40<100﹣x<1.②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x双(10<x<1)时,y=140﹣(x﹣10)=150﹣x.故y关于x的函数关系式是y=150﹣x;(2)①设第一批购买x双,则第二批购买(100﹣x)双.当25<x≤40时,则1≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;当40<x<1时,则40<100﹣x<1,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<1,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26时,w有最小值,最小值为9144元;当40<x<1时,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18、(1)直线y=x+4,点B的坐标为(8,16);(2)点C的坐标为(﹣,0),(0,0),(6,0),(32,0);(3)当M的横坐标为6时,MN+3PM的长度的最大值是1.【解析】

(1)首先求得点A的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标;(2)分若∠BAC=90°,则AB2+AC2=BC2;若∠ACB=90°,则AB2=AC2+BC2;若∠ABC=90°,则AB2+BC2=AC2三种情况求得m的值,从而确定点C的坐标;(3)设M(a,a2),得MN=a2+1,然后根据点P与点M纵坐标相同得到x=,从而得到MN+3PM=﹣a2+3a+9,确定二次函数的最值即可.【详解】(1)∵点A是直线与抛物线的交点,且横坐标为-2,,A点的坐标为(-2,1),设直线的函数关系式为y=kx+b,将(0,4),(-2,1)代入得解得∴y=x+4∵直线与抛物线相交,解得:x=-2或x=8,

当x=8时,y=16,

∴点B的坐标为(8,16);(2)存在.∵由A(-2,1),B(8,16)可求得AB2==325.设点C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m-8)2+162=m2-16m+320,①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,∴点C的坐标为(-,0),(0,0),(6,0),(32,0)(3)设M(a,a2),则MN=,又∵点P与点M纵坐标相同,∴x+4=a2,∴x=,∴点P的横坐标为,∴MP=a-,∴MN+3PM=a2+1+3(a-)=-a2+3a+9=-(a-6)2+1,∵-2≤6≤8,∴当a=6时,取最大值1,∴当M的横坐标为6时,MN+3PM的长度的最大值是119、(1)“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)有三种方案,具体见解析.【解析】

(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,根据若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需11元建立方程组求出其解即可;(2)设购买“最美东营人”文化衫m件,根据总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,列出不等式组,然后求m的正整数解.【详解】(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,由题意,得,解得:.答:“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)设购买“最美东营人”文化衫m件,则购买“最美志愿者”文化衫(90-m)件,由题意,得,解得:41<m<1.∵m是整数,∴m=42,43,2.则90-m=48,47,3.答:方案一:购买“最美东营人”文化衫42件,“最美志愿者”文化衫48件;方案二:购买“最美东营人”文化衫43件,“最美志愿者”文化衫47件;方案三:购买“最美东营人”文化衫2件,“最美志愿者”文化衫3件.本题考查了二元一次方程组的运用,一元一次不等式组的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.20、作图见解析.【解析】

由题意可知,先作出∠ABC的平分线,再作出线段BD的垂直平分线,交点即是P点.【详解】∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上;∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点,如图所示:此题主要考查了尺规作图,正确把握角平分线的性质和线段垂直平分线的性质是解题的关键.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论