




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省乐山市市中学区2025届数学八上期末综合测试试题试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.若不等式的解集是,则的取值范围是()A. B. C. D.2.下列各式正确的是()A. B. C. D.3.下面四个交通标志图中为轴对称图形的是()A. B. C. D.4.下列各式中与是同类二次根式的是()A. B. C. D.5.
的倒数是(
)A. B. C. D.6.如果是一个完全平方式,那么k的值是()A.3 B.±6 C.6 D.±37.在△ABC中,已知AB=4cm,BC=9cm,则AC的长可能是()A.5cm B.12cm C.13cm D.16cm8.在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,若证△ABC≌△A′B′C′还要从下列条件中补选一个,错误的选法是()A.∠B=∠B′ B.∠C=∠C′ C.BC=B′C′ D.AC=A′C′9.某家具生产厂生产某种配套桌椅(一张桌子,两把椅子),已知每块板材可制作桌子1张或椅子4把,现计划用120块这种板材生产一批桌椅(不考虑板材的损耗),设用x块板材做桌子,用y块板材做椅子,则下列方程组正确的是()A. B. C. D.10.如果中不含的一次项,则()A. B. C. D.11.不等式﹣2x>的解集是()A.x<﹣ B.x<﹣1 C.x>﹣ D.x>﹣112.如图,是数轴上的四个点,这四个点中最适合表示的是()A.点 B.点 C.点 D.点二、填空题(每题4分,共24分)13.如图所示,AB=BC=CD=DE=EF=FG,∠1=130°,则∠A=___度.14.由,得到的条件是:______1.15.化简的结果是_____________.16.三边都不相等的三角形的三边长分别为整数,,,且满足,则第三边的值为________.17.计算:_______.18.如图,中,是上一点,,,则____.三、解答题(共78分)19.(8分)如图,已知与互为补角,且,(1)求证:;(2)若,平分,求证:.20.(8分)如图1,已知中内部的射线与的外角的平分线相交于点.若.(1)求证:平分;(2)如图2,点是射线上一点,垂直平分于点,于点,连接,若,求.21.(8分)阅读下面的情景对话,然后解答问题:老师:我们定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.小华:等边三角形一定是奇异三角形!小明:那直角三角形中是否存在奇异三角形呢?问题(1):根据“奇异三角形”的定义,请你判断小华提出的猜想:“等边三角形一定是奇异三角形”是否正确?___________填“是”或“否”)问题(2):已知中,两边长分别是5,,若这个三角形是奇异三角形,则第三边长是_____________;问题(3):如图,以为斜边分别在的两侧作直角三角形,且,若四边形内存在点,使得,.试说明:是奇异三角形.22.(10分)一群女生住间宿舍,每间住4人,剩下18人无房住,每间住6人,有一间宿舍住不满,但有学生住.(1)用含的代数式表示女生人数.(2)根据题意,列出关于的不等式组,并求不等式组的解集.(3)根据(2)的结论,问一共可能有多少间宿舍,多少名女生?23.(10分)计算或解方程:(1)计算下列各题①(π﹣3.14)0+(﹣)2﹣3﹣2;②(3a﹣1)2﹣(3a﹣2)(3a+4);③(12a5b7﹣8a4b6﹣4a4b2)÷(﹣2a2b)2;(2)解分式方程:.24.(10分)如图,已知点B、E、C、F在同一条直线上,AB∥DE,AC∥DF,BE=CF.求证:AC=DF.25.(12分)如图,正方形的对角线交于点点,分别在,上()且,,的延长线交于点,,的延长线交于点,连接.(1)求证:.(2)若正方形的边长为4,为的中点,求的长.26.如图,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求:(1)AO,FO的长;(2)图中半圆的面积.
参考答案一、选择题(每题4分,共48分)1、C【分析】由不等式的解集是,知,从而求出a的取值范围.【详解】由不等式的解集是,知不等号方向发生变化,则,解得:,故选C.【点睛】本题是对不等式知识的考查,熟练掌握不等式中同乘或同除一个负数时,不等号方向发生变化是解决本题的关键.2、D【分析】根据幂的运算法则即可依次判断.【详解】A.,故错误;B.,故错误;C.,故错误;D.,正确,故选D.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.3、D【分析】根据“一个图形沿着某条直线对折,直线两旁的部分能够互相重合”求解.【详解】A、不是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项正确.
故选D.【点睛】本题考查的是轴对称图形,掌握轴对称图形的定义是关键.4、C【分析】先将选项中的二次根式化为最简二次根式,然后根据同类二次根式的被开方数相同判断即可得出答案.【详解】解:A、与被开方数不相同,不是同类二次根式,故本选项错误;B、与被开方数不相同,不是同类二次根式,故本选项错误;C、与的被开方数相同,是同类二次根式,故本选项正确;D、与被开方数不相同,不是同类二次根式,故本选项错误;故选:C【点睛】本题考查了同类二次根式,解题的关键是二次根式的化简.5、C【解析】根据倒数定义可知,的倒数是.【详解】解:-×-=1故答案为:C.【点睛】此题考查倒数的定义,解题关键在于熟练掌握其定义.6、B【分析】根据完全平方式得出k=±1×1×3,求出即可.【详解】∵x1−kxy+9y1是一个完全平方式,∴x1−kxy+9y1=x1±1•x•3y+(3y)1,即k=±6,故选:B.【点睛】本题考查了对完全平方式的应用,注意:完全平方式有两个:a1+1ab+b1和a1−1ab+b1.7、B【分析】根据三角形的三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边,求出AC的取值范围,然后逐项判断即可.【详解】由三角形的三边关系定理得因此,只有B选项满足条件故选:B.【点睛】本题考查了三角形的三边关系定理,熟记定理是解题关键.8、C【解析】试题分析:由题意知这两个三角形已经具备一边和一角对应相等,那就可以选择SAS,AAS,ASA,由此可知A是,ASA,B是AAS,D是SAS,它们均正确,只有D不正确.故选C考点:三角形全等的判定定理9、D【分析】设用x块板材做桌子,用y块板材做椅子,根据“用120块这种板材生产一批桌椅”,即可列出一个二元一次方程,根据“每块板材可做桌子1张或椅子4把,使得恰好配套,一张桌子两把椅子”,列出另一个二元一次方程,即可得到答案.【详解】设用x块板材做桌子,用y块板材做椅子,∵用100块这种板材生产一批桌椅,∴x+y=120①,生产了x张桌子,4y把椅子,∵使得恰好配套,1张桌子4把椅子,∴2x=4y②,①和②联立得:,故选:D.【点睛】本题考查了由实际问题抽象出二元一次方程组,正确找出等量关系,列出二元一次方程组是解题的关键.10、A【分析】利用多项式乘多项式法则计算,根据结果不含x的一次项求出m的值即可.【详解】解:原式=x2+(m-5)x-5m,
由结果中不含x的一次项,得到m-5=0,
解得:m=5,
故选:A【点睛】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.11、A【解析】解:根据不等式的基本性质3,不等式两边同除以-2,即可得x<-故选A.【点睛】此题主要考查了不等式的性质,利用不等式的基本性质3解题,关键是注意两边同时乘以或除以同一个负数,不等式的符号改变.12、A【分析】根据进行判断即可.【详解】∵∴∴点最适合表示故答案为:A.【点睛】本题考查了用数轴上的点表示无理数的问题,掌握要表示的数的大小范围是解题的关键.二、填空题(每题4分,共24分)13、10.【解析】试题解析:设∠A=x.∵AB=BC=CD=DE=EF=FG,∴根据等腰三角形的性质和三角形的外角的性质,得∠CDB=∠CBD=2x,∠DEC=∠DCE=3x,∠DFE=∠EDF=4x,∠FGE=∠FEG=5x,则180°-5x=130°,解,得x=10°.则∠A=10°.14、【分析】观察不等式两边同时乘以一个数后,不等式的方向没有改变,由此依据不等式的性质进行求解即可.【详解】∵由,得到,∴c2>1,∴c≠1,故答案为:≠.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变;基本性质2:不等式两边同时乘以(或除以)同一个大于1的整式,不等号方向不变;基本性质3:不等式两边同时乘以(或除以)同一个小于1的整式,不等号方向改变.15、【分析】根据分式的减法法则计算即可.【详解】解:==故答案为:.【点睛】此题考查的是分式的减法,掌握分式的减法法则是解决此题的关键.16、1【分析】由题意利用配方法和非负数的性质求得a、b的值,再根据三角形的三边关系定理求出第三边的值.【详解】解:∵,∴,∴,解得,∵1<c<5,三边都不相等∴c=1,即c的长为1.故答案为:1.【点睛】本题考查配方法的应用和三角形的三边关系以及非负数的性质,熟练掌握完全平方公式是解本题的关键.17、a3【分析】根据同底数幂的除法法则进行计算即可得到答案.【详解】.故答案为a3.【点睛】本题考查了同底数幂的除法,熟练掌握运算法则是解题的关键.18、40°【分析】设x,根据等腰三角形的性质,三角形的内角和定理得∠DAC=180°-2x,由三角形外角的性质得∠BAD=,结合条件,列出方程,即可求解.【详解】设x,∵,∴∠C=x,∠BAD=∠DBA=,∴∠DAC=180°-2x,∵,∴180°-2x+=120°,解得:x=40°,故答案是:40°.【点睛】本题主要考查等腰三角形的性质,三角形的内角和定理以及三角形外角的性质定理,掌握上述定理,列出方程,是解题的关键.三、解答题(共78分)19、(1)详见解析;(2)详见解析.【分析】(1)由与互为补角,则,然后得到,即可得到结论成立;(2)由平行线的性质和角平分线的性质,得到,则,然后得到,即可得到结论成立.【详解】(1)证明:∵,,互为补角,∴,∴,∴,∵,∴,∴.(2)解:∵,∴,∵平分,∴,∴.∴,∵,∴,又∴,∴,∴,∴,【点睛】本题考查了平行线的判定和性质,角平分线的性质,等边对等角,三角形内角和定理,解题的关键是熟练掌握平行线的判定和性质,熟练运用所学知识进行解题.20、(1)详见解析;(2)1.【分析】(1)根据角平分线的定义和三角形的外角性质进行计算和代换即可.(2)连接,过作垂足为,根据AF是角平分线可得,FG垂直平分BC可得,从而可得,再由,可得,从而可得,即可得.【详解】(1)证明:设,平分,,,,,,,又,∴,即平分.(2)解:连接,过作垂足为,由(1)可知平分,又∵,,垂直平分于点,在与中,,,∴,与中,,,∴,即,,.【点睛】本题考查了全等三角形综合,涉及了三角形角平分线性质、线段垂直平分线性质,(1)解答的关键是沟通三角形外角和内角的关系;(2)关键是作辅助线构造全等三角形转化线段和差关系.21、(1)是;(2);(3)见解析【分析】问题(1)根据题中所给的奇异三角形的定义直接进行判断即可.
问题(2)分c是斜边和b是斜边两种情况,再根据勾股定理判断出所给的三角形是否符合奇异三角形的定义.
问题(3)利用勾股定理得AC2+BC2=AB2,AD2+BD2=AB2,由AD=BD,则AD=BD,所以2AD2=AB2,加上AE=AD,CB=CE,所以AC2+CE2=2AE2,然后根据新定义即可判断△ACE是奇异三角形.【详解】(1)解:设等边三角形的一边为a,则a2+a2=2a2,
∴符合奇异三角形”的定义.
∴“等边三角形一定是奇异三角形”是真命题;
故答案为:是;(2)解:①当为斜边时,另一条直角边,∵(或)∴Rt△ABC不是奇异三角形,②当5,是直角边时,斜边∵,∴,∴Rt△ABC是奇异三角形,
故答案为;(3)证明∵∠ACB=∠ADB=90°,
∴AC2+BC2=AB2,AD2+BD2=AB2,
∵AD=BD,
∴2AD2=AB2,
∵AE=AD,CB=CE,
∴AC2+CE2=2AE2,
∴△ACE是奇异三角形.【点睛】本题属于四边形综合题,考查了解直角三角形,勾股定理,奇异三角形的定义等知识,解题的关键是理解题意,灵活运用.22、(1)人;(2);(3)可能有10间宿舍,女生58人,或者11间宿舍女生62人【分析】(1)根据题意直接列代数式,用含的代数式表示女生人数即可;(2)根据题意列出关于的不等式组,并根据解一元一次不等式组的方法求解即可;(3)根据(2)的结论可以得出或,并代入女生人数即可求出答案.【详解】解:(1)由题意可得女生人数为:()人.(2)依题意可得,解得:.(3)由(2)知,∵为正整数,∴或,时,女生人数为(人),时,女生人数为(人),∴可能有10间宿舍,女生58人,或者11间宿舍,女生62人.【点睛】本题考查列代数式以及解一元一次不等式组,根据题意列出代数式以及一元一次不等式组是解题的关键.23、(1)①1;②9﹣12a;③3ab5﹣2b4+1;(2)x=﹣.【分析】(1)①原式利用零指数幂、负整数指数幂法则计算即可求出值;②原式利用完全平方公式,以及多项式乘以多项式法则计算即可求出值;③原式利用幂的乘方与积的乘方运算法则计算,再利用多项式除以单项式法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1)①原式=1+﹣=1;②原式=9a2﹣6a+1﹣9a2﹣6a+8=9﹣12a;③原式=(12a5b7﹣8a4b6﹣4a4b2)÷(4a4b2)=3ab5﹣2b4+1;(2)去分母得:x2﹣x=2x+4+x2+x﹣2,解得:x=﹣,经检验x=﹣是分式方程的解.【点睛】本题考查代数式的运算及分式方程的计算,关键在于熟练掌握基础计算方法.24、证明见解析【分析】根据平行线的性质可得∠B=∠DEF,∠ACB=∠F,由BE=CF可得BC=EF,运用ASA证明△ABC与△DEF全等,从而可得出结果.【详解】证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,∵AB∥DE,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 计算机软件测试技术与社会政策评估试题及答案
- 公共政策的评估标准试题及答案
- 软件设计师考试思维导图的应用试题及答案
- 项目实施过程中的利益相关者分析试题及答案
- 西方政治制度中的权力分立原则试题及答案
- 软考网络工程师考后反思与总结试题及答案
- 软件设计师考试跨领域技能的重要性探讨试题及答案
- 政治语言与传播的考核试题及答案
- 软件测试中的风险识别与评估试题及答案
- 2025年海上风力发电场运维管理中的海上风电场运维设备状态评估与技术创新探索报告
- 戈麦斯安全法则
- 心内科工作流程
- 薪酬激励实施方案
- 2025年上海市各区高三语文一模试题汇编之文言文二阅读(含答案)
- 大学英语四级写作课件
- 《PBR次世代游戏建模技术》教学大纲
- 国家开放大学本科《管理英语3》一平台机考真题及答案总题库珍藏版
- 20万吨高塔造粒颗粒硝酸铵工艺安全操作规程
- CJJ82-2012 园林绿化工程施工及验收规范
- 江苏省南京市2022-2023学年四年级下学期数学期末试卷(含答案)
- 江苏省南京市建邺区2022-2023学年五年级下学期期末数学试卷
评论
0/150
提交评论