2025届浙江省温州市永嘉县八年级数学第一学期期末经典模拟试题含解析_第1页
2025届浙江省温州市永嘉县八年级数学第一学期期末经典模拟试题含解析_第2页
2025届浙江省温州市永嘉县八年级数学第一学期期末经典模拟试题含解析_第3页
2025届浙江省温州市永嘉县八年级数学第一学期期末经典模拟试题含解析_第4页
2025届浙江省温州市永嘉县八年级数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省温州市永嘉县八年级数学第一学期期末经典模拟试题试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为()A.0.5×10﹣4 B.5×10﹣4 C.5×10﹣5 D.50×10﹣32.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.以上都不对3.若一个等腰三角形腰上的高等于腰长的一半,则这个等腰三角形底角度数为()A.30° B.30°或60° C.15°或30° D.15°或75°4.要使分式有意义,x的取值范围满足()A.x≠2 B.x≠1 C.x≠1且x≠2 D.x≠1或x≠25.在下列实数中,无理数是()A. B. C. D.6.如图,在三角形纸片ABC中,∠ACB=90°,BC=3,AB=5,在AC上取一E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CE的长度为()A.1 B. C.2 D.7.如图,在等腰△ABC中,AB=AC=10,BC=12,O是△ABC外一点,O到三边的垂线段分别为OD,OE,OF,且OD:OE:OF=1:4:4,则AO的长度是()A.10 B.9 C. D.8.如图,在锐角三角形ABC中,直线l为BC的中垂线,射线m为∠ABC的角平分线,直线l与m相交于点P.若∠BAC=60°,∠ACP=24°,则∠ABP的度数是()A.24° B.30° C.32° D.36°9.如图,在△ABC中,AB=AC,∠B=50°,P是边AB上的一个动点(不与顶点A重合),则∠BPC的度数可能是A.50° B.80° C.100° D.130°10.下列计算正确的是()A. B.(x+2)(x—2)=x—2 C.(a+b)=a+b D.(-2a)=4a二、填空题(每小题3分,共24分)11.的绝对值是________.12.已知矩形的长为,宽为,则该矩形的面积为_________.13.因式分解:=.14.因式分解:_________.15.如图,是等边三角形,,、相交于点,于,,,则的长是______.16.若,则_____.17.已知2m=a,4n=b,m,n为正整数,则23m+4n=_____.18.如果正多边形的一个外角为45°,那么它的边数是_________.三、解答题(共66分)19.(10分)在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为______;(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为______.20.(6分)先化简,再求值.a(a+2)-(a5+3a3)÷a3其中a=-121.(6分)(1)已知3x=2y=5z≠0,求的值;(2)某市政工程计划将安装的路灯交给甲、乙两家灯饰厂完成,已知甲厂生产100个路灯与乙厂生产150个路灯所用时间相同,且甲厂比乙厂每天少生产10个路灯,问甲、乙两家工厂每天各生产路灯多少个?22.(8分)同学们,我们以前学过完全平方公式,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的非负数(以及0)都可以看作是一个数的平方,如,,下面我们观察:,反之,,∴,∴求:(1);(2);(3)若,则m、n与a、b的关系是什么?并说明理由.23.(8分)先化简再求值:,其中.24.(8分)化简:[(a+2b)(a﹣2b)﹣(a+4b)2]÷(4b).25.(10分)在△ABC中,CA=CB=3,∠ACB=120°,将一块足够大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如图所示放置,顶点P在线段AB上滑动,三角尺的直角边PM始终经过点C,并且与CB的夹角∠PCB=α,斜边PN交AC于点D.(1)当PN∥BC时,判断△ACP的形状,并说明理由.(2)在点P滑动的过程中,当AP长度为多少时,△ADP≌△BPC,为什么?(3)在点P的滑动过程中,△PCD的形状可以是等腰三角形吗?若不可以,请说明理由;若可以,请直接写出α的度数.26.(10分)如图,由5个全等的正方形组成的图案,请按下列要求画图:(1)在图案(1)中添加1个正方形,使它成轴对称图形但不是中心对称图形.(2)在图案(2)中添加1个正方形,使它成中心对称图形但不是轴对称图形.(3)在图案(3)中添加1个正方形,使它既成轴对称图形,又成中心对称图形.

参考答案一、选择题(每小题3分,共30分)1、C【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.00005=,故选C.2、B【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE,根据全等三角形对应边相等可得AC=AE,求出△DEB的周长=AB.【详解】解:∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,在△ACD和△AED中,,∴△ACD≌△AED(HL),∴AC=AE,∴可得△DEB的周长=BD+DE+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=6cm,∴△DEB的周长为6cm.故选:B.【点睛】角平分线上的点到角的两边的距离相等与根据HL证明全等,等量代换理清逻辑。3、D【分析】因为三角形的高有三种情况,而直角三角形不合题意,故舍去,所以应该分两种情况进行分析,从而得到答案.【详解】(1)当等腰三角形是锐角三角形时,腰上的高在三角形内部,如图,BD为等腰三角形ABC腰AC上的高,并且BD=AB,根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角为30°,此时底角为75°;(2)当等腰三角形是钝角三角形时,腰上的高在三角形外部,如图,BD为等腰三角形ABC腰AC上的高,并且BD=AB,根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角的邻补角为30°,此时顶角是150°,底角为15°.故选:D.【点睛】此题主要考查等腰三角形的性质及30°直角三角形的性质的逆用;正确的分类讨论是解答本题的关键.4、B【分析】根据分式有意义的条件可得x−1≠0,再解即可.【详解】解:由题意得:x﹣1≠0,解得:x≠1,故选:B.【点睛】本题考查了分式有意义的条件.关键是掌握分式有意义的条件是分母不等于零.5、B【解析】∵π是无限不循环小数,∴π是无理数,其它的数都是有理数.故选B.6、B【解析】试题分析:由Rt△ABC中,BC=3,AB=5,利用勾股定理,可求得AC的长,由折叠的性质,可得CD的长,然后设DE=x,由勾股定理,即可列方程求得结果.∵Rt△ABC中,BC=3,AB=5,∴由折叠的性质可得:AB=BD=5,AE=DE,∴CD=BD-BC=2,设DE=x,则AE=x,∴CE=AC-AE=4-x,∵在Rt△CDE中,DE2=CD2+BCE2,∴x2=22+(4-x)2,解得:,∴.故选B.考点:此题主要考查了图形的翻折变换,勾股定理点评:解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.7、D【分析】连接OA,OB,OC,由,设,根据得到AO为的角平分线,再根据得到,根据三线合一及勾股定理求出AD=8,再根据得到方程即可求解.【详解】解:连接OA,OB,OC,由题意知:,设,,∴AO为的角平分线,又,,∴AD为△ABC的中线,∴BD=6在,AD==8,,,.故选D【点睛】此题主要考查角平分线的判定及性质,解题的关键是熟知等腰三角形的三线合一、角平分线的判定及三角形的面积公式.8、C【分析】连接PA,根据线段垂直平分线的性质得到PB=PC,得到∠PBC=∠PCB,根据角平分线的定义得到∠PBC=∠ABP,根据三角形内角和定理列式计算即可.【详解】连接PA,如图所示:

∵直线L为BC的垂直平分线,

∴PB=PC,

∴∠PBC=∠PCB,

∵直线M为∠ABC的角平分线,

∴∠PBC=∠ABP,

设∠PBC=x,则∠PCB=∠ABP=x,

∴x+x+x+60°+24°=180°,

解得,x=32°,

故选C.【点睛】考查的是线段垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9、C【分析】根据等边对等角可得∠B=∠ACB=50°,再根据三角形内角和计算出∠A的度数,然后根据三角形内角与外角的关系可得∠BPC>∠A,再因为∠B=50°,所以∠BPC<180°-50°=130°进而可得答案.【详解】∵AB=AC,∠B=50°,∴∠B=∠ACB=50°,∴∠A=180°-50°×2=80°,∵∠BPC=∠A+∠ACP,∴∠BPC>∠A,∴∠BPC>80°.∵∠B=50°,∴∠BPC<180°-50°=130°,则∠BPC的值可能是100°.故选C.【点睛】此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等.10、D【解析】分别根据同底数幂乘法、积的乘方、平方差公式、完全平方公式,对各选项计算后利用排除法求解.【详解】解:A.,故A选项不正确;B.(x+2)(x—2)=x-4,故B选项不正确;C.(a+b)=a+b+2ab,故C选项不正确;D.(-2a)=4a,故D选项正确.故选:D【点睛】本题考查了整式乘法,熟练掌握运算性质是解题的关键.二、填空题(每小题3分,共24分)11、【解析】根据绝对值的意义,实数的绝对值永远是非负数,负数的绝对值是它的相反数,即可得解.【详解】解:根据负数的绝对值是它的相反数,得故答案为.【点睛】此题主要考查绝对值的意义,熟练掌握,即可解题.12、【分析】直接利用矩形的性质结合二次根式乘法运算法则计算即可.【详解】解:∵矩形的长为,宽为,∴该矩形的面积为:,故答案为:.【点睛】本题考查了二次根式的应用,掌握矩形的性质是解题的关键.13、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式a后继续应用平方差公式分解即可:.14、【分析】提取公因式a得,利用平方差公式分解因式得.【详解】解:,故答案为:.【点睛】本题考查了因式分解,掌握提公因式法和平方差公式是解题的关键.15、1【分析】由已知条件,先证明△ABE≌△CAD得∠BPQ=60°,可得BP=2PQ=6,AD=BE.即可求解.【详解】∵△ABC为等边三角形,

∴AB=CA,∠BAE=∠ACD=60°;

又∵AE=CD,

在△ABE和△CAD中,,

∴△ABE≌△CAD;

∴BE=AD,∠CAD=∠ABE;

∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;

∵BQ⊥AD,

∴∠AQB=90°,则∠PBQ=90°-60°=30°;

∵PQ=3,

∴在Rt△BPQ中,BP=2PQ=6;

又∵PE=1,

∴AD=BE=BP+PE=1.

故答案为:1.【点睛】本题主要考查了全等三角形的判定与性质及等边三角形的性质及含30°的角的直角三角形的性质;巧妙借助三角形全等和直角三角形中30°的性质求解是正确解答本题的关键.16、-4【解析】直接利用完全平方公式得出a的值.【详解】解:∵,∴故答案为:【点睛】此题主要考查了公式法分解因式,正确应用公式是解题关键.17、a3b2【解析】∵,∴23m+4n=.故答案为:.18、8【详解】正多边形的一个外角为45°,那么它的边数是故答案为三、解答题(共66分)19、(1)(﹣3,1)(1)见解析(3)(a﹣3,b+1)【解析】试题分析:(1)根据坐标系可得B点坐标,再根据关于y轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;(1)首先确定A、B、C三点平移后的对应点位置,然后再连接即可;(3)根据△AOB的平移可得P的坐标为(a,b),平移后横坐标﹣3,纵坐标+1.解:(1)B点关于y轴的对称点坐标为(﹣3,1),故答案为(﹣3,1);(1)如图所示:(3)P的坐标为(a,b)平移后对应点P1的坐标为(a﹣3,b+1).故答案为(a﹣3,b+1).点评:此题主要考查了作图﹣﹣平移变换,关键是几何图形都可看做是由点组成,我们在画一个图形的平移图形时,也就是确定一些特殊点的对应点.20、2a-3,-5【分析】根据单项式乘多项式法则和多项式除以单项式法则化简,然后代入求值即可.【详解】解:原式=a2+2a-a2-3=2a-3当a=-1时,原式=-2-3=-5【点睛】此题考查的是整式的化简求值题,掌握单项式乘多项式法则和多项式除以单项式法则是解决此题的关键.21、(1)58;(2)甲工厂每天生产20个路灯,乙工厂每天生产30个路灯.【分析】(1)设3x=2y=5z=30a(a≠0),用含a的代数式表示x,y,z,进而即可求解;(2)设甲工厂每天生产x个路灯,则乙工厂每天生产(x+10)个路灯,根据“甲厂生产100个路灯与乙厂生产150个路灯所用时间相同”,列出分式方程,即可求解.【详解】(1)∵3x=2y=5z≠0,∴设3x=2y=5z=30a(a≠0),∴x=10a,y=15a,z=6a,∴;(2)设甲工厂每天生产x个路灯,则乙工厂每天生产(x+10)个路灯,依题意,得:,解得:x=20,经检验,x=20是分式方程的解,且符合题意,x+10=30,答:甲工厂每天生产20个路灯,乙工厂每天生产30个路灯.【点睛】本题主要考查分式的求值以及分式方程的实际应用,解题的关键是:(1)用同一个字母表示出x,y,z;(2)根据等量关系,列出分式方程.22、(1);(2);(3),,理由见解析【分析】(1)将3拆分为2+1,再根据完全平方公式和二次根式化简即可求解;

(2)将4拆分为3+1,再根据完全平方公式和二次根式化简即可求解;

(3)利用二次根式的性质结合完全平方公式直接化简得出即可.【详解】解:(1)==;(2);(3)m+n=a,mn=b.理由:∵,∴,∴m+n+2=a+2,∴m+n=a,mn=b【点睛】此题主要考查了二次根式的性质与化简,正确理解二次根式化简的意义是解题关键.23、.【分析】先因式分解,再利用分式的除法性质:除以一个分式等于乘以这个分式的倒数,约分、化简,最后代入特殊值解题即可.【详解】解:原式===a﹣2,当a=2+时,原式=2+﹣2=.【点睛】本题考查分式的化简求值,其中涉及因式分解:十字相乘法、平方差公式、完全平方公式等知识,是重要考点,掌握相关知识是解题关键.24、﹣5b﹣2a.【分析】根据题意先计算括号内的,再计算除法即可得出答案.【详解】解:[(a+2b)(a﹣2b)﹣(a+4b)2]÷(4b)=(a2﹣4b2﹣a2﹣8ab﹣16b2)÷(4b)=(﹣20b2﹣8ab)÷(4b)=﹣5b﹣2a.【点睛】本题主要考查整式的混合运算,解题的关键是掌握完全平方公式和平方差公式及合并同类项法则.25、(1)直角三角形,理由见解析;(2)当AP=3时,△ADP≌△BPC,理由见解析;(3)当α=45°或90°或0°时,△PCD是等腰三角形【分析】(1)由PN与BC平行,得到一对内错角相等,求出∠ACP为直角,即可得证;

(2)当AP=3时,△ADP与△BPC全等,理由为:根据CA=CB,且∠ACB度数,求出∠A与∠B度数,再由外角性质得到∠α=∠APD,根据AP=BC,利用ASA即可得证;

(3)点P在滑动时,△PCD的形状可以是等腰三角形,分三种情况考虑:当PC=PD;PD=CD;PC=CD,分别求出夹角α的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论