版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省扬州市部分区、县数学八上期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,用4张全等的长方形拼成一个正方形,用两种方法表示图中阴影部分的面积可得出一个代数恒等式,若长方形的长和宽分别为a、b,则这个代数恒等式是()A.(a+b)2=a2+2ab+b2 B.(a-b)2=(a+b)2-4abC.(a+b)(a-b)=a2-b2 D.(a-b)2=a2-ab+b22.16的平方根是()A.4 B.-4 C.±4 D.±23.甲、乙两班举行班际电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:输入汉字个数(个)132133134135136137甲班人数(人)102412乙班人数(人)014122通过计算可知两组数据的方差分别为s甲2=2.0,s乙2=2.7,则下列说法:①甲组学生比乙组学生的成绩稳定;②两组学生成绩的中位数相同;③两组学生成绩的众数相同,其中正确的有()A.0个 B.1个 C.2个 D.3个4.下列各式从左到右的变形属于分解因式的是()A. B.C. D.5.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是()A.10 B.8 C.6 D.46.的算术平方根为()A. B. C. D.7.下列各式中,从左到右的变形是因式分解的是()A.3x+3y+1=3(x+y)+1 B.a2﹣2a+1=(a﹣1)2C.(m+n)(m﹣n)=m2﹣n2 D.x(x﹣y)=x2﹣xy8.如图,在△ABC中,AB=AC,点D是BC边上的中点,则下列结论中错误的是()A.∠BAD=∠CAD B.∠BAC=∠B C.∠B=∠C D.AD⊥BC9.下列代数式,,,,,中分式的个数有()A.1个 B.2个 C.3个 D.4个10.如图,在六边形中,若,与的平分线交于点,则等于()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在正方形网格中,△ABC的每一个顶点都在格点上,AB=5,点D是AB边上的动点(点D不与点A,B重合),将线段AD沿直线AC翻折后得到对应线段AD1,将线段BD沿直线BC翻折后得到对应线段BD2,连接D1D2,则四边形D1ABD2的面积的最小值是____.12.x+=3,则x2+=_____.13.若三角形的三边满足a:b:c=5:12:13,则这个三角形中最大的角为_____度.14.点(2+a,3)关于y轴对称的点的坐标是(﹣4,2﹣b),则ab=_____.15.计算:3﹣2=_____.16.已知,则___________.17.方程的根是______.18.某种病毒近似于球体,它的半径约为0.00000000234米,用科学记数法表示为_____米.三、解答题(共66分)19.(10分)如图,正比例函数y=x与一次函数y=ax+7的图象相交于点P(4,n),过点A(2,0)作x轴的垂线,交一次函数的图象于点B,连接OB.(1)求a值;(2)求△OBP的面积;(3)在坐标轴的正半轴上存在点Q,使△POQ是以OP为腰的等腰三角形,请直接写出Q点的坐标.20.(6分)如图,在中,,点在内,,,点在外,,.(1)求的度数;(2)判断的形状并加以证明;(3)连接,若,,求的长.21.(6分)在中,,,点是上的一点,连接,作交于点.(1)如图1,当时,求证:;(2)如图2,作于点,当时,求证:;(3)在(2)的条件下,若,求的值.22.(8分)如图,在Rt△ABC中,∠ACB=90°,两直角边AC=8cm,BC=6cm.(1)作∠BAC的平分线AD交BC于点D;(尺规作图,不写作法,保留作图痕迹)(2)计算△ABD的面积.23.(8分)△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1、B1、C1的坐标.(2)将△ABC向右平移6个单位,画出平移后的△A2B2C2;(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.24.(8分)如图,在△中,是边的垂直平分线,交于、交于,连接.(1)若,求的度数;(2)若△的周长为,△的周长为,求的长.25.(10分)如图,△ABC是等腰直角三角形,且∠ACB=90°,点D是AB边上的一点(点D不与A,B重合),连接CD,过点C作CE⊥CD,且CE=CD,连接DE,AE.(1)求证:△CBD≌△CAE;(2)若AD=4,BD=8,求DE的长.26.(10分)将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(,0),与s轴相交于点Q.(1)试确定三角板ABC的面积;(2)求平移前AB边所在直线的解析式;(3)求s关于m的函数关系式,并写出Q点的坐标.
参考答案一、选择题(每小题3分,共30分)1、B【解析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积-小正方形的面积=4个矩形的面积.【详解】由图形可知,图中最大正方形面积可以表示为:(a+b)2这个正方形的面积也可以表示为:S阴+4ab∴(a+b)2=S阴+4ab∴S阴=(a+b)2-4ab故选B.【点睛】考查了完全平方公式的几何背景,能够正确找到大正方形和小正方形的边长是难点.解决问题的关键是读懂题意,找到所求的量的等量关系.2、C【解析】16的平方根是,故选C.3、B【分析】根据中位数,众数的计算方法,分别求出,就可以分别判断各个命题的真假.【详解】解:①甲组学生比乙组学生的成绩方差小,∴甲组学生比乙组学生的成绩稳定.②甲班学生的成绩按从小到大排列:132、134、134、135、135、135、135、136、137、137,可见其中位数是135;乙班学生的成绩按从小到大排列:133、134、134、134、134、135、136、136、137、137,可见其中位数是134.5,所以两组学生成绩的中位数不相同;③甲班学生成绩的众数是135,乙班学生成绩的众数是134,所以两组学生成绩的众数不相同.故选B.【点睛】此题考查方差问题,对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可.方差是反映数据波动大小的量.4、B【分析】根据因式分解的是多项式,分解的结果是积的形式,进行判断即可.【详解】A.,不是因式分解,不符合题意;B.,是运用平方差公式进行的因式分解,符合题意;C.,最后结果不是乘积的形式,不属于因式分解,不符合题意;D.,不是在整式范围内进行的分解,不属于因式分解,不符合题意.故选:B【点睛】本题考查了因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,理解因式分解的定义是解决此类问题的关键.5、C【解析】延长BD交AC于点E,则可知△ABE为等腰三角形,则S△ABD=S△ADE,S△BDC=S△CDE,可得出S△ADC=S△ABC.【详解】解:如图,延长BD交AC于点E,∵AD平分∠BAE,AD⊥BD,∴∠BAD=∠EAD,∠ADB=∠ADE,在△ABD和△AED中,,∴△ABD≌△AED(ASA),∴BD=DE,∴S△ABD=S△ADE,S△BDC=S△CDE,∴S△ABD+S△BDC=S△ADE+S△CDE=S△ADC,∴S△ADC=S△ABC=×12=6(m2),故答案选C.【点睛】本题主要考查等腰三角形的判定和性质,由BD=DE得到S△ABD=S△ADE,S△BDC=S△CDE是解题的关键.6、B【解析】分析:先求得的值,再继续求所求数的算术平方根即可.详解:∵=2,而2的算术平方根是,∴的算术平方根是,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.7、B【分析】根据因式分解的意义,可得答案.【详解】解:A、没把一个多项式转化成几个整式积的形式,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、是整式的乘法,故C错误;D、是整式的乘法,故D错误;故选:B.【点睛】把多项式化为几个整式的积的形式,即是因式分解8、B【分析】由在△ABC中,AB=AC,点D为BC的中点,根据等边对等角与三线合一的性质,即可求得答案.【详解】∵AB=AC,点D为BC的中点,
∴∠BAD=∠CAD,AD⊥BC,∠B=∠C.
故A、C、D正确,B错误.
故选:B.【点睛】本题考查了等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.9、C【分析】根据分式的定义进行判断即可得解.【详解】解:∵代数式中是分式的有:,,∴有个分式.故选:C【点睛】本题考查了分式的定义,能根据分式的定义进行判断是解题的关键.10、D【分析】先根据六边形的内角和,求出∠DEF与∠AFE的度数和,进而求出∠GEF与∠GFE的度数和,然后在△GEF中,根据三角形的内角和定理,求出∠G的度数,即可.【详解】∵六边形ABCDEF的内角和=(6−2)×180°=720°,
又∵∠A+∠B+∠C+∠D=520°,
∴∠DEF+∠AFE=720°−520°=200°,
∵GE平分∠DEF,GF平分∠AFE,
∴∠GEF+∠GFE=(∠DEF+∠AFE)=×200°=100°,
∴∠G=180°−100°=80°.
故选:D.【点睛】本题主要考查多边形的内角和公式,三角形内角和定理以及角平分线的定义,掌握多边形的内角和公式,是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】延长AC使CE=AC,先证明△BCE是等腰直角三角形,再根据折叠的性质解得S四边形ADCD1+S四边形BDCD2=1,再根据S四边形D1ABD2=S四边形ADCD1+S四边形BDCD2+S△D1CD2,可得要四边形D1ABD2的面积最小,则△D1CD2的面积最小,即:CD最小,此时,CD⊥AB,此时CD最小=1,根据三角形面积公式即可求出四边形D1ABD2的面积的最小值.【详解】如图,延长AC使CE=AC,∵点A,C是格点,∴点E必是格点,∵CE2=12+22=1,BE2=12+22=1,BC2=12+32=10,∴CE2+BE2=BC2,CE=BE,∴△BCE是等腰直角三角形,∴∠BCE=41°,∴∠ACB=131°,由折叠知,∠DCD1=2∠ACD,∠DCD2=2∠BCD,∴∠DCD1+∠DCD2=2(∠ACD+∠BCD)=2∠ACB=270°,∴∠D1CD2=360°﹣(∠DCD1+DCD2)=90°,由折叠知,CD=CD1=CD2,∴△D1CD2是等腰直角三角形,由折叠知,△ACD≌△ACD1,△BCD≌△BCD2,∴S△ACD=S△ACD1,S△BCD=S△BCD2,∴S四边形ADCD1=2S△ACD,S四边形BDCD2=2S△BCD,∴S四边形ADCD1+S四边形BDCD2=2S△ACD+2S△BCD=2(S△ACD+S△BCD)=2S△ABC=1,∴S四边形D1ABD2=S四边形ADCD1+S四边形BDCD2+S△D1CD2,∴要四边形D1ABD2的面积最小,则△D1CD2的面积最小,即:CD最小,此时,CD⊥AB,此时CD最小=1,∴S△D1CD2最小=CD1•CD2=CD2=,即:四边形D1ABD2的面积最小为1+=1.1,故答案为1.1.【点睛】本题考查了四边形面积的最值问题,掌握等腰直角三角形的性质、折叠的性质、三角形面积公式是解题的关键.12、1【解析】直接利用完全平方公式将已知变形,进而求出答案.【详解】解:∵x+=3,∴(x+)2=9,∴x2++2=9,∴x2+=1.故答案为1.【点睛】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.13、1【解析】设三角形的三边分别为5x,12x,13x,则(5x)2+(12x)2=(13x)2,根据勾股定理的逆定理,这个三角形是直角三角形,则这个三角形中最大的角为1度,故答案为:1.14、.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:∵点(2+a,3)关于y轴对称的点的坐标是(-4,2-b),
∴2+a=4,2-b=3,
解得a=2,b=-1,所以,ab=2-1=,故答案为【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.15、.【分析】根据负指数幂的定义直接计算即可.【详解】解:3﹣2=.故答案为.【点睛】本题考查的知识点是负指数幂的计算,任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数,在这个幂的意义中,强调底数不等于零,否则无意义。16、2【分析】先把变形为,再整体代入求解即可.【详解】∵,∴当时,原式.故答案为:2.【点睛】本题考查利用因式分解进行整式求值,解题的关键是利用完全平方公式进行因式分解.17、,【分析】先移项得到x(x+1)-1(x+1)=0,再提公因式得到(x+1)(x-1)=0,原方程化为x+1=0或x-1=0,然后解一次方程即可.【详解】解:∵x(x+1)-1(x+1)=0,
∴(x+1)(x-1)=0,
∴x+1=0或x-1=0,
∴x1=-1,x1=1.
故答案为:x1=-1,x1=1.【点睛】本题考查了解一元二次方程—因式分解法:先把方程,右边化为0,再把方程左边因式分解,这样把原方程转化为两个一元一次方程,然后解一次方程即可得到原方程的解.18、2.34×11﹣2【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.【详解】1.11111111234米=2.34×11﹣2米.故答案为:2.34×11﹣2.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×11﹣n,其中1≤|a|<11,n为由原数左边起第一个不为零的数字前面的1的个数所决定.三、解答题(共66分)19、(1)a=-1;(2)7;(3)点Q的坐标为(5,0)或(8,0)或(0,5)或(0,6)【分析】(1)先由点P在正比例函数图象上求得n的值,再把点P坐标代入一次函数的解析式即可求出结果;(2)易求点B坐标,设直线AB与OP交于点C,如图,则点C坐标可得,然后利用△OBP的面积=S△BCO+S△BCP代入相关数据计算即可求出结果;(3)先根据勾股定理求出OP的长,再分两种情况:当OP=OQ时,以O为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q1、Q2,如图2,则点Q1、Q2即为所求,然后利用等腰三角形的定义即可求出结果;当PO=PQ时,以P为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q4、Q3,如图3,则点Q4、Q3也为所求,然后利用等腰三角形的性质即可求得结果.【详解】解:(1)把点P(4,n)代入y=x,得:n=×4=3,∴P(4,3),把P(4,3)代入y=ax+7得,3=4a+7,∴a=﹣1;(2)∵A(2,0),AB⊥x轴,∴B点的横坐标为2,∵点B在y=﹣x+7上,∴B(2,5),设直线AB与OP交于点C,如图1,当x=2时,,∴C(2,),∴△OBP的面积=S△BCO+S△BCP=2×(5﹣)+(4﹣2)×(5﹣)=7;(3)过点P作PD⊥x轴于点D,∵P(4,3),∴OD=4,PD=3,∴,当OP=OQ时,以O为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q1、Q2,如图2,则点Q1、Q2即为所求,且Q2(5,0)、Q1(0,5);当PO=PQ时,以P为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q4、Q3,如图3,则点Q4、Q3也为所求,由于PO=PQ3,∴DQ3=DO=4,∴Q3(8,0),过点P作PF⊥y轴于点F,同理可得:FQ4=FO=3,∴Q4(0,6).综上所述,在坐标轴的正半轴上存在点Q,使△POQ是以OP为腰的等腰三角形,点Q的坐标为(5,0)或(8,0)或(0,5)或(0,6).【点睛】本题考查了一次函数图象上点的坐标特征、勾股定理、三角形的面积和等腰三角形的性质等知识,属于常考题型,熟练掌握一次函数的相关知识和等腰三角形的性质是解题的关键.20、(1)150°;(2)△ABE是等边三角形,理由见解析;(3)1【分析】(1)首先证明△DBC是等边三角形,推出∠BDC=60°,再证明△ADB≌△ADC,推出∠ADB=∠ADC即可解决问题.
(2)结论:△ABE是等边三角形.只要证明△ABD≌△EBC即可.
(3)首先证明△DEC是含有30度角的直角三角形,求出EC的长,理由全等三角形的性质即可解决问题.【详解】(1)解:∵BD=BC,∠DBC=60°,∴△DBC是等边三角形,∴DB=DC,∠BDC=∠DBC=∠DCB=60°,在△ADB和△ADC中,,∴△ADB≌△ADC,∴∠ADB=∠ADC,∴∠ADB=(360°﹣60°)=150°.(2)解:结论:△ABE是等边三角形.理由:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE,在△ABD和△EBC中,,∴△ABD≌△EBC,∴AB=BE,∵∠ABE=60°,∴△ABE是等边三角形.(3)解:连接DE.∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°,∴∠EDC=30°,∴EC=DE=1,∵△ABD≌△EBC,∴AD=EC=1.【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质、30度角的直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质.21、(1)见解析;(2)见解析;(3)1.【分析】(1)利用三角形外角的性质证得,从而证得,即可证明结论;(2)利用三角形外角的性质证得,继而求得,从而证得结论;(3)作出如图辅助线,利用证得,利用等腰三角形三线合一的性质求得,用面积法求得,从而证得结论.【详解】(1)∵,∴,∵,,,∴,∵,∴,∴,∵,∴;(2)∵,,∴,∵,,,∴,∵,∴,∵,∴,∵,∴,∵,,∴,∵,∴,∴,∵,∴;(3)过点作交延长线于点,过点作于点,过点作于点,∴,∵,,∴,∵,∴,∴,∵,,∴,∴,∵,∴,∵,∴,∴,∴,∵,∴,∵,,∴,∵,∴,∴【点睛】本题属于三角形综合题,考查了等腰三角形的性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.22、(1)详见解析;(2).【分析】(1)利用尺规作出∠CAB的角平分线即可;(2)作DE⊥AB,垂足为E.设CD=DE=x,在Rt△DEB中,利用勾股定理构建方程即可解决问题.【详解】解:(1)作图如下:AD是∠ABC的平分线.(2)在Rt△ABC中,由勾股定理得:AB===10,作DE⊥AB,垂足为E.∵∠ACB=90°,AD是∠ABC的平分线,∴CD=DE,设CD=DE=x,∴DB=6﹣x,∵∠C=∠AED=90°,AD=AD,DC=DE,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE=8,∴EB=AB﹣AE=10﹣8=2,在Rt△DBE中由勾股定理得:x2+22=(6﹣x)2解方程得x=,∴S=AB•DE=.【点睛】本题考查了角平分线作图、角平分线的性质、全等三角形的判定与性质及勾股定理,灵活利用角平分线的性质添加辅助线是解题的关键.23、(1)图详见解析,A1、B1、C1的坐标分别为(0,4)、(2,2),(1,1);(2)详见解析;(3)△A1B1C1和△A2B2C2关于直线x=3对称.【分析】(1)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用点利用的坐标规律写出A2、B2、C2的坐标,然后描点即可得到△A2B2C2;(3)利用对称轴的对应可判断△A1B1C1和△A2B2C2关于直线x=3对称.【详解】解:(1)如图,△A1B1C1为所作,A1、B1、C1的坐标分别为(0,4)、(2,2),(1,1);(2)如图,△A2B2C2为所作;(3)△A1B1C1和△A2B2C2关于直线x=3对称,如图.【点睛】本题考查轴画轴对称图形,关键在于熟记轴对称的基础知识,理解题意.24、(1)30°(2)6cm【解析】(1)首先计算出∠ABC的度数,再根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AD=BD,进而可得∠ABD=∠A=40°,然后可得答案;(2)根据线段垂直平分线的性质可得AD=DB,AE=BE,然后再计算出AC+BC的长,再利用△ABC的周长为26cm可得AB长,进而可得答案.【详解】解:(1)∵,∴,,∴,∵是边的垂直平分线,∴,∴,∴;(2)∵△的周长为,∴,∴,∴,∵△的周长为,∴,∴,∴.故答案为(1)30°;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论