




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省娄底市冷水江市八年级数学第一学期期末考试试题题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.要说明命题“若ab,则a2b2”是假命题,能举的一个反例是()A.a3,b2 B.a4,b1 C.a1,b0 D.a1,b22.计算的结果是()A.3 B.±3 C.9 D.±93.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点 B.△ABC三边的中垂线的交点C.△ABC三条角平分线的交点 D.△ABC三条高所在直线的交点.4.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的△ADH中(
)A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD5.如图,已知,垂足为,,,则可得到,理由是()A. B. C. D.6.点E(m,n)在平面直角坐标系中的位置如图所示,则坐标(m+1,n﹣1)对应的点可能是()A.A点 B.B点 C.C点 D.D点7.下列多项式能用完全平方公式进行因式分解的是()A.a2﹣1 B.a2+4 C.a2+2a+1 D.a2﹣4a﹣48.如果把分式中的x与y都扩大2倍,那么这个分式的值()A.不变 B.扩大2倍 C.扩大4倍 D.扩大6倍9.下列约分正确的是()A. B. C. D.10.若代数式有意义,则x必须满足条件()A.x≥﹣1 B.x≠﹣1 C.x≥1 D.x≤﹣111.如图,在中,,,.沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为.则的周长是()A.15 B.12 C.9 D.612.的值是()A.8 B.-8 C.2 D.-2二、填空题(每题4分,共24分)13.若一次函数、的图象相交于,则关于x、y的方程组的解为______.14.如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为_____.15.如图,是中边上的中线,点分别为和的中点,如果的面积是,则阴影部分的面积是___________.16.已知,则式子__________________.17.若一个正多边形的一个内角等于135°,那么这个多边形是正_____边形.18.已知多边形的内角和等于外角和的三倍,则边数为___________.三、解答题(共78分)19.(8分)为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,1.八年级:92,74,87,82,72,81,94,83,1,83,80,81,71,81,72,1,82,80,70,2.整理数据:七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875八年级7880.5应用数据:(1)由上表填空:a=,b=,c=,d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.20.(8分)如图,在长度为1个单位的小正方形网格中,点、、在小正形的顶点上.(1)在图中画出与关于直线成轴对称的;(2)在直线上找一点(在图中标出,不写作法,保留作图痕迹),使的长最小,并说明理由.21.(8分)如图,直线过点A(0,6),点D(8,0),直线:与轴交于点C,两直线,相交于点B.(1)求直线的解析式和点B的坐标;(2)连接AC,求的面积;(3)若在AD上有一点P,把线段AD分成2:3的两部分时,请直接写出点P的坐标(不必写解答过程).22.(10分)如图①,点是等边内一点,,.以为边作等边三角形,连接.(1)求证:;(2)当时(如图②),试判断的形状,并说明理由;(3)求当是多少度时,是等腰三角形?(写出过程)23.(10分)列方程解应用题:亮亮服装店销售一种服装,若按原价销售,则每月销售额为10000元;若按八五折销售,则每月多卖出20件,且月销售额还增加1900元.(1)求每件服装的原价是多少元?(2)若这种服装的进价每件150元,求按八五折销售的总利润是多少元?24.(10分)夏季来临,天气逐渐炎热起来,某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料个一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每瓶各多少元?25.(12分)化简,并求值,其中a与2、3构成△ABC的三边,且a为整数.26.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若△ABC、△AMN周长分别为13cm和8cm.(1)求证:△MBE为等腰三角形;(2)线段BC的长.
参考答案一、选择题(每题4分,共48分)1、D【分析】作为反例,要满足条件但不能得到结论,然后根据这个要求对各选项进行判断即可.【详解】解:A、a=3,b=2时.满足a>b,则a2>b2,不能作为反例,错误;B、a=4,b=-1时.满足a>b,则a2>b2,不能作为反例,错误;C、a=1,b=0时.满足a>b,则a2>b2,不能作为反例,错误;D、a=1,b=-2时,a>b,但a2<b2,能作为反例,正确;故选:D.【点睛】本题考查了命题与定理;熟记:要判断一个命题是假命题,举出一个反例就可以.2、A【解析】根据公式进一步计算即可.【详解】∵,故选:A.【点睛】本题主要考查了二次根式的计算,熟练掌握相关公式是解题关键.3、C【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【详解】解:∵凉亭到草坪三条边的距离相等,
∴凉亭选择△ABC三条角平分线的交点.
故选:C.【点睛】本题主要考查的是角平分线的性质在实际生活中的应用.主要利用了利用了角平分线上的点到角两边的距离相等.4、B【解析】翻折后的图形与翻折前的图形是全等图形,利用折叠的性质,正方形的性质,以及图形的对称性特点解题.【详解】解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.
故选B.【点睛】本题主要考查翻折图形的性质,解决本题的关键是利用图形的对称性把所求的线段进行转移.5、A【分析】根据全等三角形的判定定理分析即可.【详解】解:∵∴∠AOB=∠COD=90°在Rt△AOB和Rt△COD中∴(HL)故选A.【点睛】此题考查的是全等三角形的判定定理,掌握用HL判定两个三角形全等是解决此题的关键.6、C【分析】根据坐标的平移方法进行分析判断即可.【详解】(m+1)﹣m=1,n﹣(n﹣1)=1,则点E(m,n)到(m+1,n﹣1)横坐标向右移动1单位,纵坐标向下移动1个单位,故选C.【点睛】本题考查了坐标的平移,正确分析出平移的方向以及平移的距离是解题的关键.7、C【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.【详解】A.
不符合完全平方公式法分解因式的式子特点,故错误;B.
不符合完全平方公式法分解因式的式子特点,故错误;C.符合完全平方公式法分解因式的式子特点,故正确;D.,不符合完全平方公式法分解因式的式子特点,故错误.故选C.【点睛】本题考查因式分解-运用公式法.8、B【分析】根据分式的分子分母都乘以或处以同一个不为零的数,分式的值不变,可得答案.【详解】分式中的x与y都扩大2倍,得,
故选:B.【点睛】此题考查分式的基本性质,解题关键在于掌握分式的分子分母都乘以或处以同一个不为零的数,分式的值不变.9、D【分析】根据题意找出分子与分母的最大公因式,利用分式的基本性质化简即可得出结果.【详解】解:A.,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选:D.【点睛】本题考查分式的约分,先找出分子与分母的最大公因式,并熟练利用分式的基本性质化简是解题的关键.10、A【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【详解】由题意得,x+1≥0,
解得,x≥-1,
故选A.【点睛】本题考查了二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.11、B【分析】先根据勾股定理的逆定理判断△ABC是直角三角形,从而可得B、E、C三点共线,然后根据折叠的性质可得AD=ED,CA=CE,于是所求的的周长转化为求AB+BE,进而可得答案.【详解】解:在中,∵,∴是直角三角形,且∠A=90°,∵沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,∴B、E、C三点共线,AD=ED,CA=CE,∴BE=BC-CE=15-1=3,∴的周长=BD+DE+BE=BD+AD+3=AB+3=9+3=1.故选:B.【点睛】本题考查了勾股定理的逆定理和折叠的性质,属于常见题型,熟练掌握上述基本知识是解题关键.12、B【分析】根据立方根进行计算即可;【详解】∵,∴;故选B.【点睛】本题主要考查了立方根,掌握立方根的运算是解题的关键.二、填空题(每题4分,共24分)13、【分析】关于x、y的二元一次方程组的解即为直线y=ax+b(a≠0)与y=cx+d(c≠0)的交点P(-1,3)的坐标.【详解】∵直线y=ax+b(a≠0)与y=cx+d(c≠0)相交于点P(-1,3),∴关于x、y的二元一次方程组的解是.故答案为.【点睛】本题考查了一次函数与二元一次方程(组),解题的关键是熟练的掌握一次函数与二元一次方程组的相关知识点.14、【解析】作B′H⊥x轴于H点,连结OB,OB′,根据菱形的性质得到∠AOB=30°,再根据旋转的性质得∠BOB′=75°,OB′=OB=2,则∠AOB′=∠BOB′﹣∠AOB=45°,所以△OBH为等腰直角三角形,根据等腰直角三角形性质可计算得OH=B′H=,然后根据第四象限内点的坐标特征写出B′点的坐标.【详解】作B′H⊥x轴于H点,连结OB,OB′,如图,∵四边形OABC为菱形,∴∠AOC=180°﹣∠C=60°,OB平分∠AOC,∴∠AOB=30°,∵菱形OABC绕原点O顺时针旋转75°至第四象限OA′B′C′的位置,∴∠BOB′=75°,OB′=OB=2,∴∠AOB′=∠BOB′﹣∠AOB=45°,∴△OB′H为等腰直角三角形,∴OH=B′H=OB′=,∴点B′的坐标为(,﹣),故答案为(,﹣).【点睛】本题考查了坐标与图形变化,旋转的性质,解直角三角形等,熟知旋转前后哪些线段或角相等是解题的关键.15、1【分析】根据三角形面积公式由点D为AB的中点得到S△BCD=S△ADC=S△ABC=8,同理得到S△ADE=S△ACE=S△ACD=4,然后再由点F为AE的中点得到S△DEF=S△ADE=1.【详解】解:∵点D为BC的中点,
∴S△BCD=S△ADC=S△ABC=8,
∵点E为CD的中点,
∴S△ADE=S△ACE=S△ACD=4,
∵点F为AE的中点,
∴S△DEF=S△ADE=1,
即阴影部分的面积为1.
故答案为:1.【点睛】本题考查了三角形的中线平分面积的性质,掌握基本性质是解题的关键.16、1【分析】将已知的式子两边平方,进一步即可得出答案.【详解】解:∵,∴,即,∴1.故答案为:1.【点睛】本题考查了完全平方公式和代数式求值,属于常考题型,熟练掌握完全平方公式和整体的思想是解题的关键.17、八【解析】360°÷(180°-135°)=818、1【分析】首先设边数为n,由题意得等量关系:内角和=360°×3,根据等量关系列出方程,可解出n的值.【详解】解:设边数为n,由题意得:110(n﹣2)=360×3,解得:n=1,故答案为:1.【点睛】此题主要考查了多边形的内角与外角,关键是掌握多边形内角和与外角和定理:多边形的内角和(n﹣2)•110°(n≥3)且n为整数),多边形的外角和等于360度.三、解答题(共78分)19、(1)11,10,78,81;(2)90人;(3)八年级的总体水平较好【解析】(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.【详解】解:(1)由题意知,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,1,79,79,80,80,81,83,85,86,87,94,∴其中位数,八年级成绩的众数,故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数,∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).【点睛】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.20、(1)图见解析;(2)图见解析,理由见解析【分析】(1)先分别找到A、B、C关于l的对称点,然后连接即可;(2)连接,交l于点P,连接BP,根据轴对称的性质和两点之间线段最短即可说明.【详解】解:(1)分别找到A、B、C关于l的对称点,然后连接,如图所示,即为所求;(2)连接,交l于点P,连接BP,由轴对称的性质可知BP=∴此时,根据两点之间线段最短,即为的最小值,如图所示,点P即为所求.【点睛】此题考查的是画已知三角形的轴对称图形和轴对称性质的应用,掌握轴对称图形的画法、轴对称的性质和两点之间线段最短是解决此题的关键.21、(1)直线的解析式为,;(2)15;(3)点P的坐标为或.【分析】(1)先利用待定系数法可求出直线的解析式,再联立直线,的解析式可得点B的坐标;(2)先根据直线的解析式求出点C的坐标,再根据点的坐标分别求出的长以及点B到x轴的距离,然后根据的面积等于的面积减去的面积即可得;(3)设点P的坐标为,先利用两点之间的距离公式求出AD的长,再根据题意可得或,然后利用两点之间的距离公式分别列出等式,求解即可得.【详解】(1)设直线的解析式为∵直线经过∴将点代入解析式得:解得则直线的解析式为联立,的解析式得:解得则点B的坐标为;(2)对于直线:当时,,解得则点C的坐标为,点B到x轴的距离为3则即的面积为15;(3)由题意,设点P的坐标为,且点P把线段AD分成的两部分或①当时由两点之间的距离公式得:解得则此时点P的坐标为②当时由两点之间的距离公式得:解得则此时点P的坐标为综上,点P的坐标为或.【点睛】本题考查了一次函数的图象与性质、利用待定系数法求一次函数的解析式等知识点,较难的是题(3),依据题意,正确分两种情况讨论是解题关键.22、(1)证明见解析;(2)是直角三角形,证明见解析;(3)当为100°、130°、160°时,△AOD是等腰三角形.【分析】(1)利用等边三角形的性质证明即可;(2)是直角三角形,利用,得到,再分别求出∠CDO、∠COD即可解答;(3)分三种情况讨论:①②③,即可解答.【详解】(1)∵△ABC和△OBD是等边三角形∴即在△ABO和△CBD中∴(2)直角三角形∵∴∵∴,∴△COD是直角三角形(3)①,需∴∴②,需∴∴③,需∴∴∴当为100°、130°、160°时,△AOD是等腰三角形【点睛】本题考查了三角形的综合问题,掌握全等三角形的性质以及判定定理、等边三角形的性质、直角三角形的性质、等腰三角形的性质是解题的关键.23、(1)200元;(2)1400元【分析】(1)设每件服装的原价为x元,根据“按八五折销售,则每月多卖出20件”,列出分式方程解答即可;(2)根据“总利润=单件利润×销售数量”列出算式计算即可.【详解】(1)设每件服装的原价为x元,根据题意得:解得:经检验是原方程的解.答:每件服装的原价
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 皖西卫生职业学院《数字游戏角色设计》2023-2024学年第二学期期末试卷
- 幼儿园大班社会活动《课间十分钟》教案(5篇)
- 2025年重庆市安全员知识题库及答案
- 莆田学院《数据结构(Java)》2023-2024学年第二学期期末试卷
- 天津中德应用技术大学《商务数据分析》2023-2024学年第二学期期末试卷
- 潍坊学院《土地测量与评价》2023-2024学年第二学期期末试卷
- 邯郸科技职业学院《风电机组设计与制造》2023-2024学年第二学期期末试卷
- 长治幼儿师范高等专科学校《预算管理模拟》2023-2024学年第二学期期末试卷
- 2025年江西省建筑安全员《B证》考试题库
- 2025年湖南省安全员《A证》考试题库及答案
- 施工技术交底(电气安装)
- 高中英语真题-高考英语语法填空专练(6)及答案
- 污水处理厂TOT项目招标文件模板
- 劳工及道德体系法律法规清单
- 仓储物流中心物业管理服务费报价单
- 2024年哈尔滨科学技术职业学院单招职业适应性测试题库及答案解析
- 2024年北京市大兴区清源街道招聘笔试冲刺题(带答案解析)
- (2024年)污水处理设备培训方案
- 《生物质热电联产工程设计规范》
- 中国十五冶招聘线上笔试测评题库
- 中国结直肠癌诊疗规范(2023版)解读
评论
0/150
提交评论