




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE1PAGE类型一实数混合运算1.(2023·浙江嘉兴·统考中考真题)___________.【答案】2023【分析】负数的绝对值是它的相反数,由此可解.【详解】解:的相反数是2023,故,故答案为:2023.【点睛】本题考查求一个数的绝对值,解题的关键是掌握负数的绝对值是它的相反数.2.(2023·四川广安·统考中考真题)的平方根是_______.【答案】±2【详解】解:∵∴的平方根是±2.故答案为:±2.3.(2023·重庆·统考中考真题)计算_____.【答案】1.5【分析】先根据负整数指数幂及零指数幂化简,再根据有理数的加法计算.【详解】.故答案为:1.5.【点睛】本题考查了负整数指数幂及零指数幂的意义,任何不等于0的数的负整数次幂,等于这个数的正整数次幂的倒数,非零数的零次幂等于1.4.(2023·重庆·统考中考真题)计算:________.【答案】6【分析】根据绝对值、零指数幂法则计算即可.【详解】解:.故答案为:6.【点睛】本题考查了实数的混合运算,熟练掌握相关运算法则是解决本题的关键.5.(2023·四川凉山·统考中考真题)计算_________.【答案】【分析】根据零指数幂、二次根式的性质进行计算即可.【详解】.故答案为:.【点睛】本题考查了实数的混合运算,二次根式的性质等知识,掌握任何一个不为零的数的零次幂都是1是解题的关键.6.(2023·安徽·统考中考真题)计算:_____________.【答案】【分析】根据求一个数的立方根,有理数的加法即可求解.【详解】解:,故答案为:.【点睛】本题考查了求一个数的立方根,熟练掌握立方根的定义是解题的关键.7.(2023·江苏连云港·统考中考真题)如图,数轴上的点分别对应实数,则__________0.(用“”“”或“”填空)
【答案】【分析】根据数轴可得,进而即可求解.【详解】解:由数轴可得∴故答案为:.【点睛】本题考查了实数与数轴,有理数加法的运算法则,数形结合是解题的关键.8.(2023·江苏连云港·统考中考真题)计算:__________.【答案】【分析】根据二次根式的性质即可求解.【详解】解:故答案为:.【点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键.9.(2023·四川自贡·统考中考真题)计算:.【答案】【分析】先化简绝对值,零指数幂,有理数的乘方,再进行计算即可求解.【详解】解:.【点睛】本题考查了实数的混合运算,熟练掌握化简绝对值,零指数幂,有理数的乘方是解题的关键.10.计算:.【答案】3【分析】分别计算负数的偶次幂、二次根式、特殊角的正弦值,再进行加减即可.【详解】解:.【点睛】本题考查负数的偶次幂、二次根式化简以及特殊角的三角函数值,属于基础题,正确计算是解题的关键.11.(2023·四川泸州·统考中考真题)计算:.【答案】3【分析】根据负整数指数幂和零指数幂运算法则,特殊角的三角函数值,进行计算即可.【详解】解:.【点睛】本题主要考查了实数混合运算,解题的关键是熟练掌握负整数指数幂和零指数幂运算法则,特殊角的三角函数值,准确计算.12.计算:.【答案】7【分析】利用零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则计算即可.【详解】解:原式【点睛】本题考查零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则,熟练掌握实数的运算法则是解答此类问题的关键.13.(2023·四川广安·统考中考真题)计算:【答案】【分析】先计算有理数的乘方、零指数幂、特殊角的余弦值、化简绝对值,再计算乘法与加减法即可得.【详解】解:原式.【点睛】本题考查了零指数幂、特殊角的余弦值、实数的混合运算,熟练掌握各运算法则是解题关键.14.(2023·浙江金华·统考中考真题)计算:.【答案】【分析】根据零指数幂、算术平方根的定义、特殊角的三角函数值、绝对值的意义,计算即可.【详解】解:原式,,.【点睛】本题考查了零指数幂、算术平方根的定义、特殊角的三角函数值、绝对值的意义.本题的关键是注意各部分的运算法则,细心计算.15.(2023·四川眉山·统考中考真题)计算:【答案】6【分析】先计算零指数幂,负整数指数幂和特殊角三角函数值,再根据实数的混合计算法则求解即可.【详解】解:原式.【点睛】本题主要考查了实数的混合计算,特殊角三角函数值,零指数幂和负整数指数幂,熟知相关计算法则是解题的关键.16.计算:.【答案】2【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.17.(2023·云南·统考中考真题)计算:.【答案】6【分析】根据绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值分别化简计算即可得出答案.【详解】解:.【点睛】本题考查了实数的运算,熟练掌握绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值是解题的关键.18.计算:.【答案】4【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.19.(2023·湖南怀化·统考中考真题)计算:【答案】【分析】先计算负整数指数幂、算术平方根、零指数幂、减法运算,再进行加减混合运算即可.【详解】解:【点睛】此题考查了实数混合运算,熟练掌握相关运算法则是解题的关键.20.计算:.【答案】【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.【详解】解:.【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.21.计算:【答案】【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可.【详解】解:原式.【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1,.22.计算:.【答案】2【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式==2.【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.23.计算:.【答案】【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得.【详解】解:.【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.24.计算:.【答案】5-【分析】先计算零指数幂、负指数幂、锐角三角函数值,再计算二次根式的乘法和加减法.【详解】解:=1+4-2×=5-.【点睛】此题考查了零指数幂、负指数幂、锐角三角函数值,解题的关键是熟练掌握零指数幂、负指数幂、锐角三角函数值的计算法则.25.计算:.【答案】【分析】先算绝对值、算术平方根,零指数幂,再算乘法和加减法,即可求解.【详解】解:【点睛】本题主要考查实数的混合运算,掌握零指数幂和运算法则是解题的关键.25.计算:.【答案】0【分析】先算乘方,再算乘法和减法,即可.【详解】【点睛】本题考查实数的混合运算,关键是掌握.27.计算:.【答案】【分析】根据二次根式的混合运算进行计算即可求解.【详解】解:原式.【点睛】本题考查了次根式的混合运算,正确的计算是解题的关键.28.计算:【答案】【分析】根据零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质进行计算即可求解.【详解】解:原式=.【点睛】本题考查了实数的混合运算,掌握零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质是解题的关键.29.计算:2sin60°﹣|﹣2|+(π﹣)0﹣+(﹣)﹣2.【答案】3【分析】代入特殊角的三角函数值,按照实数的混合运算法则计算即可得答案.【详解】解:2sin60°﹣|﹣2|+(π﹣)0﹣+(﹣)﹣2=2×-2++1-2+4=-2++1-2+4=3.【点睛】本题考查特殊角的三角函数值、零指数幂、负整数指数幂及二次根式的性质与化简,熟练掌握实数的混合运算法则,熟记特殊角的三角函数值是解题关键.30.计算:.【答案】【分析】根据负整数指数幂、乘方、绝对值的性质化简后计算即可.【详解】解:=.【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、绝对值的性质化简.31.(2023·四川遂宁·统考中考真题)计算:【答案】【分析】根据特殊角的三角函数值,零指数幂,幂的运算法则计算即可.【详解】.【点睛】本题考查了特殊角的三角函数值,零指数幂,幂的运算,熟记三角函数值,零指数幂的运算公式是解题的关键.
32.计算:;【答案】【分析】先化简二次根式,把特殊角三角函数值代入,并求绝对值,再计算乘法,最后合并同类二次根式即可;【解析】解:原式;【点睛】本题考查实数的混合运算,分式的混合运算,熟练掌握实数混合运算法则,熟记特殊角的三角函数值.33.计算:.【答案】1【分析】根据特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值等计算法则求解即可.【详解】解:.【点睛】本题考查了特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值,准确熟练地化简各式是解题的关键.34.计算:.【答案】【分析】原式分别利用乘方,特殊角的三角函数值,零指数幂,负整数指数幂,乘法法则分别计算,再作加减法.【详解】解:==【点睛】此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.35.计算:.【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可【详解】解:原式.【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.36.计算:.【答案】4.【分析】由,,计算出结果.【详解】解:原式故答案为:4.【点睛】本题主要考查了实数的混合运算,关键是开三次方与绝对值的计算.37.计算:.【答案】-6;.【分析】直接利用有理数乘法法则以及绝对值的性质、二次根式的性质、零指数幂的性质分别化简得出答案;
【详解】解:;【点睛】此题主要考查了实数运算的混合运算,正确掌握相关运算法则是解题关键.38.计算:.【答案】【分析】利用算术平方根、绝对值的性质、零指数幂分别计算各项即可求解.【详解】解:原式.【点睛】本题考查实数的混合运算,掌握算术平方根、绝对值的性质、零指数幂是解题的关键.39.计算:.【答案】2020【分析】先计算绝对值、零指数幂和算术平方根,最后计算加减即可;【详解】解:,.【点睛】本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序及相关运算法则.40.计算:.【答案】【分析】先进行零指数幂和负整数指数幂,余弦函数值计算,再计算二次根式的乘法,合并同类项即可.【详解】解:,,.【点睛】本题主要考查零指数幂和负整数指数幂,特殊角三角函数值,掌握零指数幂和负整数指数幂的运算法则,特殊角锐角三角函数值是解题的关键.41.计算:【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可.【详解】解:【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.42.计算:.【答案】0【分析】分别化简各数,再作加减法.【详解】解:===0【点睛】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.43.计算:【答案】12【解析】【分析】分别根据特殊锐角三角函数值、零指数幂、负指数幂和实数性质化简各式,再计算即可.【详解】解:原式.【点睛】本题考查了特殊锐角三角函数值、零指数幂、负指数幂和实数的有关性质,解答关键是根据相关法则进行计算.44.计算:|﹣3|+2cos60°﹣×﹣(﹣)0.【答案】0【解析】【分析】先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;【详解】解:原式===0;【点睛】本题主要考查实数的混合运算,解题的关键是掌握绝对值性质、二次根式的性质、零指数幂的规定、熟记三角函数值及分式的混合运算顺序和运算法则.45.计算:【答案】.【解析】【分析】先计算平方差公式、特殊角的正切函数值、零指数幂,再计算实数的混合运算即可.【详解】原式.【点睛】本题考查了平方差公式、特殊角的正切函数值、零指数幂等知识点,熟记各运算法则是解题关键.46.计算:;【答案】.【解析】【分析】根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可;【详解】;【点睛】本题考查了实数的混合运算,二次根式的加减法,解答此题的关键是熟练掌握运算法则.47.计算:.【答案】2【解析】【分析】分别利用零指数幂、负指数幂的性质,绝对值的性质和特殊角的三角函数值分别化简即可.【详解】解:原式===2【点睛】此题主要考查了根式运算,指数计算,绝对值,三角函数值等知识点,正确应用记住它们的化简规则是解题关键.48.计算:.【答案】3【解析】【分析】根据特殊角的三角函数值,零指数幂运算及去绝对值法则进行计算即可.【详解】解:=2×+1+2-=+1+2-=3.【点睛】本题考查零次幂的性质、特殊角的三角函数值,绝对值性质实数的运算,熟练掌握计算法则是正确计算的前提.49.计算:【答案】5【解析】【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.【详解】解:原式=【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.50.计算:;【答案】0;【解析】【分析】根据实数的混合运算法则计算即可;【详解】解:原式==0;【点睛】本题考查了实数的混合运算,以及特殊角的三角函数值,解题的关键是掌握运算法则.51.计算:【答案】【解析】【分析】根据负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值进行计算即可【详解】【点睛】本题考查了负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值,熟知以上计算是解题的关键.52.计算:【答案】1【解析】【分析】根据负整指数幂的性质,特殊角的三角函数值,绝对值,零指数幂的性质,直接计算即可.【详解】.【点睛】本题主要考查了实数的混合运算,包含零指数幂,负整数指数幂,绝对值及特殊角的余弦值等,灵活运用是解题关键.53.计算:.【答案】0【解析】【分析】依次计算零指数幂,化简立方根乘以特殊的三角函数值,最后一项利用负指数幂,最后相加减即可得出答案.【详解】解:原式【点睛】此题主要考查了实数的运算以及特殊的三角函数值,熟练掌握运算法则是解题的关键.54.计算:12021﹣+(π﹣3.14)0﹣(﹣)-1.【答案】5【解析】【分析】算出立方根、零指数幂和负指数幂即可得到结果;【详解】解:原式=1﹣2+1+5=5.【点睛】本题主要考查了实数的运算,计算是解题的关键.55.计算:.【答案】0【解析】【分析】先化简各项,再作加减法,即可计算.【详解】解:原式==0,故答案为:0.【点睛】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 日照道路施工方案
- 丽水2024年浙江丽水青田县人民医院县中医医院招聘编外聘用人员52人笔试历年参考题库附带答案详解
- 板房租赁合同书样本
- 二零二五房屋买卖证明范文
- 钢轨病害施工方案
- 二零二五版反担保合同的内容
- 有房贷的离婚协议书模板
- 古诗词诵读1 采薇(节选)教学设计-2023-2024学年统编版语文六年级下册
- 二零二五民办学校教师聘任合同书
- 3 天窗(教学设计 )-2023-2024学年统编版语文四年级下册
- 分层回填现场抽样试验点位示意图
- YB/T 176-2000陶瓷内衬复合钢管
- GB/T 478-2008煤炭浮沉试验方法
- GB/T 39894-2021船舶内装质量评定项目及要求
- GB/T 20887.3-2022汽车用高强度热连轧钢板及钢带第3部分:双相钢
- GB/T 12906-2008中国标准书号条码
- GB 31645-2018食品安全国家标准胶原蛋白肽
- 湖北省市场主体发展分析报告
- GCP培训考试题库及参考答案(完整版)
- 个人信用信息基础数据库数据接口规范
- 绘本《还有一只羊》课件
评论
0/150
提交评论