版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省榆林市府谷县2025年初三第一次教学质量检测试题数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为的扇形,则A.圆锥形冰淇淋纸套的底面半径为4cmB.圆锥形冰淇淋纸套的底面半径为6cmC.圆锥形冰淇淋纸套的高为D.圆锥形冰淇淋纸套的高为2.研究表明某流感病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是()A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×1063.如图所示,若将△ABO绕点O顺时针旋转180°后得到△A1B1O,则A点的对应点A1点的坐标是()A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)4.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为()A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)5.下列各数3.1415926,,,,,中,无理数有()A.2个 B.3个 C.4个 D.5个6.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④当1<x<3时,x2+(b﹣1)x+c<1.其中正确的个数为A.1 B.2 C.3 D.47.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率8.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为()A.+=18 B.=18C.+=18 D.=189.下列计算正确的是()A.x2+x2=x4 B.x8÷x2=x4 C.x2•x3=x6 D.(-x)2-x2=010.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.12二、填空题(本大题共6个小题,每小题3分,共18分)11.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为____.12.⊙O的半径为10cm,AB,CD是⊙O的两条弦,且AB∥CD,AB=16cm,CD=12cm.则AB与CD之间的距离是cm.13.如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,与x轴交与点C,若tan∠AOC=,则k的值为_____.14.甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是_____.15.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=,AC=5,则AB的长____.16.从一副54张的扑克牌中随机抽取一张,它是K的概率为_____.三、解答题(共8题,共72分)17.(8分)如图1,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα=角α的邻边角(1)如图1,若BC=3,AB=5,则ctanB=_____;(2)ctan60°=_____;(3)如图2,已知:△ABC中,∠B是锐角,ctanC=2,AB=10,BC=20,试求∠B的余弦cosB的值.18.(8分)如图,小明的家在某住宅楼AB的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43°,顶部D的仰角是25°,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米).19.(8分)如图,AB是的直径,AF是切线,CD是垂直于AB的弦,垂足为点E,过点C作DA的平行线与AF相交于点F,已知,.求AD的长;求证:FC是的切线.20.(8分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:(1)A组的频数a比B组的频数b小24,样本容量,a为:(2)n为°,E组所占比例为%:(3)补全频数分布直方图;(4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有名.21.(8分)解不等式组:,并把解集在数轴上表示出来.22.(10分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).求教学楼AB的高度;学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).23.(12分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A60≤x<70170.17B
70≤x<80
30
aC
80≤x<90
b
0.45D
90≤x<100
8
0.08请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.24.如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.求证:BC是⊙O的切线;已知AD=3,CD=2,求BC的长.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高.【详解】解:半径为12cm,圆心角为的扇形弧长是:,
设圆锥的底面半径是rcm,
则,
解得:.
即这个圆锥形冰淇淋纸套的底面半径是2cm.
圆锥形冰淇淋纸套的高为.
故选:C.本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:圆锥的母线长等于侧面展开图的扇形半径;圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键.2、C【解析】解:,故选C.3、A【解析】
由题意可知,点A与点A1关于原点成中心对称,根据图象确定点A的坐标,即可求得点A1的坐标.【详解】由题意可知,点A与点A1关于原点成中心对称,∵点A的坐标是(﹣3,2),∴点A关于点O的对称点A'点的坐标是(3,﹣2).故选A.本题考查了中心对称的性质及关于原点对称点的坐标的特征,熟知中心对称的性质及关于原点对称点的坐标的特征是解决问题的关键.4、A【解析】
延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.【详解】如图,点P的坐标为(-4,-3).
故选A.本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.5、B【解析】
根据无理数的定义即可判定求解.【详解】在3.1415926,,,,,中,,3.1415926,是有理数,,,是无理数,共有3个,故选:B.本题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6、B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<1;故①错误。当x=1时,y=1+b+c=1,故②错误。∵当x=3时,y=9+3b+c=3,∴3b+c+6=1。故③正确。∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<1。故④正确。综上所述,正确的结论有③④两个,故选B。7、C【解析】解:A.掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B.掷一枚硬币,出现正面朝上的概率为,故此选项错误;C.从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:≈0.33;故此选项正确;D.任意写出一个整数,能被2整除的概率为,故此选项错误.故选C.8、B【解析】
根据前后的时间和是18天,可以列出方程.【详解】若设原来每天生产自行车x辆,根据前后的时间和是18天,可以列出方程.故选B本题考核知识点:分式方程的应用.解题关键点:根据时间关系,列出分式方程.9、D【解析】试题解析:A原式=2x2,故A不正确;B原式=x6,故B不正确;C原式=x5,故C不正确;D原式=x2-x2=0,故D正确;故选D考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.10、B【解析】分析:过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解.详解:如图,过点D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分线,∴DE=CD=2,∴△ABD的面积故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】试题分析:先根据一次函数平移规律得出直线y=x+b沿y轴向下平移3个单位长度后的直线解析式y=x+b﹣3,再把点A(﹣1,2)关于y轴的对称点(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=1.故答案为1.考点:一次函数图象与几何变换12、2或14【解析】
分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF−OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.13、1【解析】【分析】如图,过点A作AD⊥x轴,垂足为D,根据题意设出点A的坐标,然后根据一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,可以求得a的值,进而求得k的值即可.【详解】如图,过点A作AD⊥x轴,垂足为D,∵tan∠AOC==,∴设点A的坐标为(1a,a),∵一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,∴a=1a﹣2,得a=1,∴1=,得k=1,故答案为:1.【点睛】本题考查了正切,反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14、【解析】列举出所有情况,看甲排在中间的情况占所有情况的多少即为所求的概率.
根据题意,列出甲、乙、丙三个同学排成一排拍照的所有可能:
甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,
只有2种甲在中间,所以甲排在中间的概率是=.
故答案为;点睛:本题主要考查了列举法求概率,用到的知识点为:概率等于所求情况数与总情况数之比,关键是列举出同等可能的所有情况.15、3.【解析】
先根据同角的余角相等证明∠ADE=∠ACD,在△ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.【详解】∵四边形ABCD是矩形,∴∠ADC=90°,AB=CD,∵DE⊥AC,∴∠AED=90°,∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,∴∠ADE=∠ACD,∴tan∠ACD=tan∠ADE==,设AD=4k,CD=3k,则AC=5k,∴5k=5,∴k=1,∴CD=AB=3,故答案为3.本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.16、【解析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】一副扑克牌共有54张,其中只有4张K,∴从一副扑克牌中随机抽出一张牌,得到K的概率是=,故答案为:.此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.三、解答题(共8题,共72分)17、(1);(2);(3).【解析】试题分析:(1)先利用勾股定理计算出AC=4,然后根据余切的定义求解;(2)根据余切的定义得到ctan60°=,然后把tan60°=代入计算即可;(3)作AH⊥BC于H,如图2,先在Rt△ACH中利用余切的定义得到ctanC==2,则可设AH=x,CH=2x,BH=BC﹣CH=20﹣2x,接着再在Rt△ABH中利用勾股定理得到(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),所以BH=8,然后根据余弦的定义求解.解:(1)∵BC=3,AB=5,∴AC==4,∴ctanB==;(2)ctan60°===;(3)作AH⊥BC于H,如图2,在Rt△ACH中,ctanC==2,设AH=x,则CH=2x,∴BH=BC﹣CH=20﹣2x,在Rt△ABH中,∵BH2+AH2=AB2,∴(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),∴BH=20﹣2×6=8,∴cosB===.考点:解直角三角形.18、39米【解析】
过点A作AE⊥CD,垂足为点E,在Rt△ADE中,利用三角函数求出的长,在Rt△ACE中,求出的长即可得.【详解】解:过点A作AE⊥CD,垂足为点E,由题意得,AE=BC=28,∠EAD=25°,∠EAC=43°,在Rt△ADE中,∵,∴,在Rt△ACE中,∵,∴,∴(米),答:建筑物CD的高度约为39米.19、(1);(2)证明见解析.【解析】
(1)首先连接OD,由垂径定理,可求得DE的长,又由勾股定理,可求得半径OD的长,然后由勾股定理求得AD的长;(2)连接OF、OC,先证明四边形AFCD是菱形,易证得△AFO≌△CFO,继而可证得FC是⊙O的切线.【详解】证明:连接OD,是的直径,,,设,,,在中,,,解得:,,,,在中,;连接OF、OC,是切线,,,,,四边形FADC是平行四边形,,平行四边形FADC是菱形,,,,,即,即,点C在上,是的切线.此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.20、(1)200;16(2)126;12%(3)见解析(4)940【解析】分析:(1)由于A组的频数比B组小24,而A组的频率比B组小12%,则可计算出调查的总人数,然后计算a和b的值;(2)用360度乘以D组的频率可得到n的值,根据百分比之和为1可得E组百分比;(3)计算出C和E组的频数后补全频数分布直方图;(4)利用样本估计总体,用2000乘以D组和E组的频率和即可.本题解析:()调查的总人数为,∴,,()部分所对的圆心角,即,组所占比例为:,()组的频数为,组的频数为,补全频数分布直方图为:(),∴估计成绩优秀的学生有人.点睛:本题考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,要认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了用样本估计总体.21、x≥【解析】分析:分别求解两个不等式,然后按照不等式的确定方法求解出不等式组的解集,然后表示在数轴上即可.详解:,由①得,x>﹣2;由②得,x≥,故此不等式组的解集为:x≥.在数轴上表示为:.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22、(1)2m(2)27m【解析】
(1)首先构造直角三角形△AEM,利用,求出即可.(2)利用Rt△AME中,,求出AE即可.【详解】解:(1)过点E作EM⊥AB,垂足为M.设AB为x.在Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+1.在Rt△AEM中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,又∵,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制鞋业的在线销售与电子商务考核试卷
- 污水处理中的水资源保护与管理考核试卷
- 公共设施管理的建筑设计与工程管理考核试卷
- 塑料制品的噪声和振动控制技术考核试卷
- 炼铁过程中的环保标志使用管理考核试卷
- 光学仪器在历史学研究中的应用考核试卷
- 生产安全事故隐患治理与应急管理考核试卷
- 水利工程在城市社会心理健康和公共安全中的支撑作用考核试卷
- 机械生产安全知识课件考核试卷
- 新高考历史三轮冲刺过关练习专题17 综合冲刺专练(15+4模式)(解析版)
- 广西南宁市第十四中学2023-2024学年七年级上学期期中地理试题
- 2024-2030年中国应急产业市场发展分析及竞争形势与投资机会研究报告
- 2024年中国电动鼻毛器市场调查研究报告
- 2025年高考语文复习备考复习策略讲座
- 2024年中国具身智能行业研究:知行合一拥抱AI新范式-19正式版
- 数字中国发展报告(2023年)
- 缺乳(乳汁淤积)产妇的中医护理
- 《理解与尊重》主题班会
- 2024北师大版新教材初中数学七年级上册内容解读课件(深度)
- 2024年上半年软考信息系统项目管理师真题
- 金华市金投集团有限公司招聘笔试题库2024
评论
0/150
提交评论