




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
物理化学习题解答(一)
习题p60〜62
10解:
(1)平均自由程:1=若手,未知数〃怎么求?其物理意义是什么?
ndn
由公式pV=NkBT,fn=N/V=p/(kRT)
n=100xl03/{p(1.381xl0-23x298)}=2.43xl025/n3
I=0.707/{3,14x(03X10'9)2x2.43x1025}=1.03x10%
(2)z!=/2V^d2n,未知数%怎么求?其物理意义是什么?
%=J翳=15.01m-s"
Z!=f2x15.01x3.14x(0.3x10-9)2x2.43xl025=1.47x108/s
(3)Z=inZ/=1x2.43xl025x1.47xl08=1.77x1033/s
13解:
(1)理想气体:pV=〃R7,f(詈).=nR/p
1dv
a=v(dT)/f,giMVFR/nRTTIT
⑵范德华气体:伽+”力正乂展开方程式得,pV-//?p+〃2a/V-〃3ab/v2=〃RT
dV2,,dVa3,3dV
p(防)?+an/V\—)p+2nab/V(^)p=nR
dV,、,
232
(—)p=nR/(p-an/V+2abn/V)
1dV,,,,
a=-(—)„=nR/(pV-an2/V2+2abn3/V3)
=(7?V3-^/?V2)/(7?TV3-2anV2+4a/7n2V-2(z/72/z3)
21解:2C+O2=2COC+O2=CO2
(1)VO2=1x0.21=0.21单位体积;
Vbo=2Vo2x0.92=0.3864单位体积;
Vbo2=VO2x0.08=0.0168单位体积;
V总=V空+Vco+匕o”Vo2=1+0.3864+0.0168-0.21=1.1932单位体积.
(2)xm=k/K总=1x0.78/1.1932=0.654;
XAFVAW总=1x0.0094/1.1932=0.00788
xco=WV,&=0.3864/l.l932=0.324;
XCO2=Vco2/V£l=(lX0.0003+0.0168)/1.1932=0.0143
(3)2C+O2=
2C0C+O2=C02
24g\mol2mol12/g\mol\mol
xgx/24molx/12moly/gy/\2moly/l2mol
x+y=1000x+y=1000x=958.33/g
x/24:y/12=92:8x=23yy=41.67/g
g=x/24+y/12=958.33/24+41.67/12=43.40m。/;
〃co=x/l2=958.33/12=79.86,〃。/;
〃co2=y/l2=41.67/12=3.47机。/;
n%=noJ0.21=206.68〃?。/
n总=〃空+〃co+〃co2-〃O2=206.68+79.86+3.47-43.40=246.61zn。/
V&=n总R77p=246.61x8.314x293/105=6.00/n3
25解:
(1)co=27rx3000/60=1007r/s",V=(wr=407r/〃z7,"
EH2=*WH2V2=±x2/6.023xl()23x(407r)2=262i8xl(y2°j
2232l9
£o2=1wO2V=ix32/6.023x10x(40^)=4.195x10J
(2)〃/〃o(H2)=e卬(-EH247B)=exp[-2.6218x10-20/(l.381x1023x293)]=1.5347x1O'3
192346
n/n(i(O2)=exP(-EO2/kBT)=exP[-4.195x10-/(1.381xl0x293)]=9.477x10
(3)tt(H2)/n(O2)=1.5347x10-3/9477x10-46=16194x1(/2
物理化学习题解答(二)
习题pl29-133
3解:
(1)VV2=V!,:.w=o,
△U=^nG.mdT=1.5/?(T2-7'I)=1.5X8.314X(546-273)=3404.587
':AU=Q+W,/.e=Z\[7=3404.58J
3
p2=nRT2/V2=\X8.314X546/(22.4X10-)=202.65jtP«
(2)':T2=T1,:.AU=0
w=j一pdV=,nRT/VdV=-nRTln(V2IV\)
=-lX8.314X546Xln(44.8/22.4)=-3146.50J
":AU=Q+W,:.Q=-W=3146.50J
P3=〃RTs/V3=lX8.314X546/(44.8Xl(y3)=ioi33攵&
(3)U=pnCvmdT=1.5R/(T1-T3)=1.5X8.314X(273-546)=-3404.58J
Q=「〃CdT=2.57?(T1-T3)=2.5X8.314X(273-546)=-5674.31J
pm
JT}'
W=AU-Q=-3404.58-(-5674.31)=2269.737
3
pi=nRT3/V3=1X8.314X273/(22.4X10-)=101.33da
8解:
(1)^=«7?7|//?1=1X8.314X423/(100X1O3)=35.17XlO'V
W=^-pdVnRT/VdV=-z?/?nn(V2/Vi)
=-lX8.314X423X/〃(10/35.17)=4422.78J
2
(^)P\Vm,\=RT\+bpi-a/Vm,i+ab/VmA
5352
100X103vm,i=8.314X423+3.71XIO-X100X10-0.417/%1+0.417X3.71X10-/VmJ
5325
10Vm.i=3520.532Vm.i-0.417Vm.1+1.54707X10-,Vm.]=35.087X10V
W=^-pdV^^{RT/(Vm-b)-a/V^}dVm
=-RTln{(%2』)/(Km.iM}-a(1/%,2-1/Vm,l)
=-8.314X4231n{(10-0.0371)/(35.087-0.0371)}-0.417X103(1/10-1/35.087)
=4423.826-29.815=4394.01J
9解:
36
(1)W=-/?e(V2-Vi)=-100X10X(1677-1.043)X18X10'=-3016.72J
36
⑵W=-pe(V2-V^-PeV2=-100X10X1677X18X10-=-3018.60J:
AW%=(3018.6-3016.72)/3016.72X100%=0.063%
33
(3)V2=HWP2=1X8.314X373/(100X10)=31.0112i//n
33
W=-pe(V2-Vi)^-peV2=-100X10X31.011X10'=-3101.12J
11
(4)AvapH,n=40.69V-fnor;AvapU,n=AvapHm+1V=40.69-3.02=37.61kJmol
(5)':AvapUm>0(实际上是T、P的函数),.••△,“收"〉-W
由于体积膨胀,分子间的平均距离增大,必须克服分子间引力做功,热力学能
也增大,故蒸发的焰变大于系统所做的功。
23解:
(1)T2=TI,:.AU=O
w=P_pdV=-PnRT/VdV=-nRTln(V2/V1)=-1X8.314X298Xln2=-l717.32J
':AU=Q+W,:.Q=-W=1717.32J
(2)绝热,。=0,T2=TI(VI/V2)'"=298X(1/2严"=187.73K
Z\U=〃G”"(T2-TI)=L5X8.314(187.73-298)=-1375.2J
':AU=Q+W,:.W=AU=-\315.2J
(3)X8.314X298/(200X103)=12.38786Jm3
pi=l()4%+b,/,=200X103-104X12.38786=76121.4
443
p2=\0Vx+Pi=\0X12.38786+200X10=323.8786JtP«
T2=P2V2/nR=323.8786X2X12.38786/8.314=965.16K
7622
卬=^-pdV^-^(10V+b)dV=-5X10(V2-V1)-b(V2-Vi)=-15X1()6匕24修
=-15X106(12.38786X103)2-76121.4X12.38786X10-3=-3244.87J
-W3>-Wi>-W2;
AU3>AU\>AU2
28解:
Ag(s)+l/2Cl2(g)=AgCl(s)AfHm(AgCl,s,298.15K)=?
由1/2⑴+1/2(2)得:(5)Ag(s)+HCl(g)+l/4O2(g)=AgCl(s)+l/2H2O(l)
由⑸+(3)得:⑹Ag(s)+l/4O2(g)+l/2H2(g)=AgCl(s)+l/2H2O(l)
由⑹-1/2(4)得:⑺Ag(s)+l/2Cl2(g)=AgCl(s)
即由1/2(1)+1/2(2)+(3)-1/2(4)可得:Ag(s)+l/2Cl2(g)=AgCl(s)
故:AfH,n(AgCl,S,298.15K)=l/2(4"m;+)+
=1/2(-324.9-30.57+285.84)-92.31=-127.125kJ-mol-
31解:
C(g)+4H(g)=CH4(g)4凡:(298.15幻=?
(1)C(石墨)=C(g)4汕”肛「(298.15K)=711.1kJmoP
⑵C(石墨)+2H2(g)==CH£g)4",/(298.15K)=-74.78kJ-moC1
(3)H2(g)=2H(g)15K)=431.7kJ-mol'
由(2)-(1)-2(3)可得:C(g)+4H(g)=CH4(g)
故:4H,;(298.15K)=AfHm^-AsubHm,\-2AdiYHm3
=-74.78-711.1-2X431.7
=-1649.28kJ-morl
35解:可近似看作绝热反应AHHJ^O
(298K,100kPa)2C2H2(g)+5O2(g)+20N2(g)-4CO2(g)+2H2O(g)+20N2(g)(T=?,100kPa)
1AHf
'Ar2H;
(298K,100kPa)2C2H2(g)+5O2(g)+20N2(g)-4CO2(g)+2H2O(g)+20N2(g)(298K,lOOkPa)
ZA”i=O;«(N2)=80/20X5=20moZ
42H;=42/:(CO2)+24H;(H2O)-2△/「(C2H2)
=4X(-393.51)+2X(-241.82)-2X226.7=-2511.08kJ-mol'
Z\"2=({4G,M(CO2)+2C/),„,(H2O)+20Cp,ni(N2)}dT
=’(4X37.1+2X33.58+20X29.12)"+
X8.79XI022X10.29X10-3+20X3.76XIO3)TdT
=797.96X(7-298)+65.47X10-3(T2-2982)=(817.47+0.065477^(7-298)
AriHn^AH\+Ar2H,n+AH2,:.AH2=-&H;
(817.47+0.065477)(r-298)=2511.08XIO3
T=2806.1K
或者:AH^{4Cp.m(CO2)+2Cp.m(H2O)+20Cp.m(N2)}JT
=(4X37.1+2X33.58+20X29.12)(72-「)=797.96X(T-298)
ArlHm'=AH{+Ar2Hl,^AH2,/•AH2=-Ar2H^
797.96X(7-298)=2511.08X103
T=3444.87K
物理化学习题解答(三)
习题p200〜203
4解:
⑴p总x(VO2+VN2)=〃总AT,P02X%2="02夫7'PN2*VN2="N2RT
P,e=n怠RT/(〃o2RTi/po2+〃N2RT/pN2)="总/("02/P02+〃N2/pN2)
=l/(0.2/20+0.8/80)=50kPa
(2),.,等温,:.AU=0,AH=Q,故:。=-卬
":AV=0,:.Q=-W=0
为了计算状态函数,设计如下可逆途径:
(a)O2(298K>V、20kPa)-*O2(298K>2V、lOkPa),等温可逆
Wo2,=
r-nmRTln2=-0.2X8.314X298=-343.46J
2O2,F-WO2=343.46J
ASO2=<2O2/T=1.1526J/K
/GO2=-〃O2R77〃2=-343.46J
(b)(N2(298K.V、80kPa)->O2(298K、2V、40kPa)
Wm.r=-nmRTln2=-0.8X8.314X298=-1373.85J
如2,尸-%2=1373.85J
/SN2=如2,〃=4.6103J/K
ZAGN2=-〃N2RT/"2=-1373.85J
AS=ASm+Z\SN2=5.763J/K
WG=Z\GO2+/GN2=-1717.3J
(2),等温可逆,:.AU=0,AH=Q,AS=-5.7627J/K,Z\G=1717.3J
故:-W=Q=TAS=-5.7627X298=-1717.3J
6解:
(1)..•等温可逆,,ZiU=0,AH=Q,故:Q=-W
W=-nRTlnV2/Vi=2X8.314X300/n50/20=-4570.82J
Z\S=2/7=4570.82/300=15.324J/K
(2):真空膨胀,:.AU=Q,AH=Q,Q=-W=0,AS=15.324J/K
(3),等温,:.AU=O,AH=G
W=-Pe(%--)=-100X103X(50-20)X103=-3000J
Q=-W=3000J,Z1S=15.324J/K
8解:
(a)(0.15kg,273K)H2。⑸fH2O(l)(0.15kg,273K)等温等压可逆相变
。尸尸m//"sH=0.15X103gX333.4Jg」=50.01kJ
■Si=0/T=5OO10/273=183.19J-K"
(b)miG,(T-273)=〃?2Cp(298-7),0.15(7-273)=0.1(298-7),T=294.74K
(0.15kg,273K)H2O(l)^H2O(l)(0.15kg,TK)等压可逆
23
ZiS2=mCp/dT=mCpInT^T^O.15X10X4.184/rt(294.74/273)
=48.09J/K
(c)(1.0kg,298K)H2O(l)-*H2O(l)(1.0kg,7K)等压可逆
3
/S3=^mCP/dT=mCplnT2/T]=1.OX10X4.184/n(294.74/298)
=-46.02JK"
1
故:AS=AS\+AS^AS3=183.19+48.09-46.02=185.26J-K-
U解:
⑴,等温可逆,/.Z\t/=O,AH=0
W=-nRTlnV2!V\=-nRTlnPi/P2=\X8.314X298//?(100/600)
-4439.21J
Q=-W=4439.21J
/SS»=0/T=4439.21/298=14.90JK」
△A=/U-T/S=0-4439.21=-4439.21J
AG=AH^TAS=0-4439.21=-4439.21J
△Ss“b=-Q"=-4439.21/298=14.90JK-'
WSiso=CSsys+Z\S*"/,=0
⑵..'等温,'.AU=0,AH=0
•・,等外压,W=-Pe(v2-V!)=-Pe(nRT/p2-nRT/pi)
=-600X103XlX8.314X298X(l/600-l/100)X10-3=12.39kJ
Q=-W=-12.39kJ
Z\S=14.90JK-1
/A=-4439.21J
△G=-4439.21J
1
Z\5sub=-2/T=41.57J-K,/Siso=.S»s+/Ss迎=41.57+14.90=56.47J-K"
12解:
•.•绝热可逆,,。=0,z\s=o
A'=Ti'(pi/p2)'YInT2rYlnT\+(\-Y)lnpi/p2>/〃7W〃Ti+(lT/Y)/〃6
277
T2/TI=6,T2=455.5K
Z\(/=nCl,m(7'2-7'i)=1X2.5X8.314X(455.5-298)=3237.64J
AH=nCp,m(T2-T\)=1X3.5X8.314X(455.5-298)=4583.09J
W=/U=3237.64J
S2=S|+Z\S=Si
AG=AH-A(TS)=AH-S(T2-T\)
=4583.09-205.14X(455.5-298)=-27726.46J
AA=Z\U-A(TS)=AU-S(.T2-T])
=3237.64-205.14X(455.5-298)=-29071.91J
ASSUb=0jASiso=^Ssys+ASsub=0
16解:
(1)••,等温可逆,.,./〃=(),Z\H=0
W=-n/?nM(V2/V|)=n/?nn(p2/pi)=lX8.314X273/«2=1573.25J
Q=-W=-1573.25J
AS=Q/T=-5.7628J/K
AA=AU-TAS=W=1513.25J
AG=AH-TAS=W=1573.25J
(2).恒压可逆,W=-pe(V2-V])=-pVi=-nRT=-1X8.314X273=-2269.72J
<2=nCp,m(T2-Tl)=nCp,m(pV2/nR-pVl/nR)=2.5pb
=2.5X1X8.314X273=5674.305J
Z\H=Q=5674.305J
AU=Q+W=5614.305-2269.72=3404.585J
PiV2/piVi=nRTMRTi,T2=2T]
1
AS=nCp.mlnT2IT\=\X2.5X8.314/«2=14.41JK-
1
S2=S!+Z\S=100+14.407=1U4lJ-K-'-mor
AG=AH-A(.TS}=AH-(2T\S2-T\S\)
=5674.305-273(2X114.41-100)=-29493.555J
AA=AU-A(TS)=AU-(2T\S2-T\S\)
=3404.585-273(2X114.41-100)=-31763.275J
(3),恒容可逆,:.AV=0,W=0
Qv=nCv,m(T2-Ti)=nCv,m(p2V\lnR-p\V\/nR)=\.5p\V,
=1.5X1X8.314X273=3404.583J
/U=Q"=3404.583J
△S=pnCv,m/TdT="GmlMTHi)=1.5nRln(p2V]/Pi%)=1.5nRln2
=1.5X8.3141n2=8.644J/K
AH=AU+A(pV)=AU+^1y\-p\V\')=AU+p\V\=AU+nRT\
=3404.583+1X8.314X273=5674.3051
PW\/p\V\=nRTVnRT\,T2=2T}
ll
S2=S1+AS=100+8.644=108.644J-K--mor
AG=AH-Z\(TS)=AH-(T2S2—T5)=/4-(2T|S2-TIS。
=5674.305-273X(2X108.644-100)=-26345.32J
AA=AV-A(TS)=AU-(T2S2-T\S\)=AU-(1T\S2-T\S\)
=3404.583-273X(2X108.644-100)=-28615.04J
(4)•.•绝热可逆,.*.Q=0,AS=0
T2、=TI'SI/P2)…,YInT尸Y/nTi+(l-Y)ln2,lnT^lnT\+(\/YT)/〃2
I2/5
T2/T=2-"5,T2=2'T|=206.9K
AU=nCvjn(T2-T\)=\X1.5X8.314X(206.9-273)=-824.33J
AH=nCp,m(T2-Ti)=lX2.5X8.314X(206.9-273)=-1373.89J
W=/U=-824.33J
11
S2=AS+Si=Si=100J-K-mol
AG=AH-△(TS)=4H-(T2SI-TIS\)
=-1373.89-100(206.9-273)=5236.11J
AA=AU-Z\(TS)=/U-(T2s2-T5)
=-824.33-100(206.9-273)=5785.67J
(5)•.•绝热,:.Q=Q
,恒外压,'.AU=W=-pe(V2-Vi)=-pe{nRT2/p2-nRT\lp\}
=nR(peT2/p2-peTi//?i)
W=AU=nCv,m(T2-T\)=\.5nR(T2-T\)
-(PeW-PeTi/p1)=1.5(72-7!),死+0.5八=1.541.5/,T2=O.8T1
△U=nCv,m(T2-T|)=-0.2nCv,mTi=-0.2X1X1.5X8.314X273=-680.92J
△H=nCp,m(T2-Ti)=-0.2nCv,mTi=-0.2X1X2.5X8.314X273=-1134.86J
W=/U=-680.92J
设计如下可逆途径:
(273K,lOOkP.绝热不可逆’50kPa)
忘Jr
、Q73K,50kPa)/
g,=-W1=nRTlnV^V^nRTlnpi/p2=-1X8.314X273//?2=683.25J
AS\=Q\/T=683.25/273=2.5028J/K
Z\S2=fnCpmJTdT=nCp,mlnT2/T}
=lX2.5X8.3141n(0.8Ti/Ti)=-4.638J/K
Z\S=Z\SI+Z\S2=2.5028-4.6383=-2.135J/K
1
S2-SI=AS,S2=AS+SI=-4.638+100=95.362J-K4-moF
△A=At/-A(rS)=Z\U-(T2s2-T1S1)
=-680.92-273(0.8X95.362-100)=-7153.86J
Z\G=AH-A(rS)=AH-(T2S2-T\S\)
=-1134.86-273(0.8X95.362-100)=-7607.8J
19解:
e
⑴C(石墨)一C(金刚石)Z\trsG,„=?
£八乩「=八阳"「(石墨)-4”“「(金刚石)=-393.51-(-395.40)=1.89/,〃。尸
金刚石)-(石墨)=2.45-5.71=-326/K小。尸
e3
ArsG,,,°=/\lrsffni-TZ\trsSm°=1.89-298X(-3.26X10-)=2861.48J-moL'
(2)4rsG「>0,;・石墨比金刚石稳定。
(3)4、G,"=Z^G/+J;Vdp=Q,112Xl(y3(i/p*1/p石)dp=-2861.48
12X1O-3(1/3513-l/2260)(p-pe)=-2861.48
p-p°=1510932234.8Pa,p=1511032234.8P«=1.511X1OgPa
故:增加压力可使不稳定晶体向稳定晶体转化。
20解:
pVm=RT+ap
VmA=RT/p]+a,Vm,2=RT/p2+a
W=-pdV=一jRT/(y,„+a)dVm=RTln{(Vm,2+a)/(Vm,i+a)}
=-RTln(p[/p2)
Z\G=fVdp=/(RT/P+a)dp=RTln(pdpi)+a(p2-pi)
Z\A=-fpdV=W=-RTln(px/p2)
,dS._
%)T=T需p=RP
AS=r一R/pdp=Rl〃(P2/pi)
Jpl
Q=TAS=-RTln(pypi)
AU=Q+W=-RTln(p2/p\)-RTln(p1/p2)=0
AH=AU+A(pV)=O+nRZ\T=O
23证明:
i,。八i,。八八八VTa2
a=M(而=M(而)T,证明:Cp-c、=
K
rr《UHdu_(d{U+Pv)du
,eu、,ev\,eu、月u、1ZQU、
=(君)。+H乔)"一(寿*(方)。*&'V-(而)v
=(―)+(—)(—)+apV-(-)=«V(—)+apV
STv5VTrSTpdTvdVTr
S(A+TS)dAdS
=aV(-----dV-----)'+apV=aV^'dv^r+aVT^'dV^r+中丫
_VTa2
z:—apV+aVTaP^=—ccVT(T-----
K
24证明:
范氏方程:p=RT/(Vm-b)-a^
dU=TdS-pdV=(祭),=T鲁)T-P=T(3-p=RT
dVeVdT
25证明:
—)s
ss
dVdp-pV-nRTn
-atT-=-=—i-=-nR
26解:
(600K,lOOkPa)CaSO4-2H2O(s)-CaSO4(S)+2H2O(g)(600K,lOOkPa)
HDt(3)
(2)
(298K,lOOkPa)CaSO4-2H2O(s)-CaSO£S)+2H2O(g)(298K,lOOkPa)
e
ArHm°(2)=zAf//„,°(CaSO4)+2AHm°(H2O)-AfH,n(CaSO4-2H2O)
=-1432.68+2(-241.82)-(-2021.12)=104.8kJ/mol
ArS,,,°(2)=2X188.83+106.70-193.97=290.39JK-1
4U:(2)=zAM「(2)-A(pV)=ArHin\2)-pV=AH;Q)-nRT
=104.8-2X8.314X298X10-3=99.84kJ-mor1
Z\rG「(2)=Z\r”,「(2)-T/⑸」(2)=104.8-298X290.39X10-3=18.26kJ/mol
4A,J(2)=ZiG:(2)-A(pV)=4G/(2)-pV=4G「(2)-〃RT
=18.26-2X8.314X298X10-3=13.30kJ/mol
Z\//,„(l)=/?Cp,m(298-600)=186.20X(298-600)=-56.23kJmo「
ZA1)=/",”(1)-pZW〜1)=-56.23kJ-mor'
1
Z\S(1)=1nCP.m/TdT=nCp,Jn(T2/ri)=lX186.20/n(298/600)=-130.31JK-
zAG(l)=Z\A(l)=
AHm(3)=E呜,m(600-298)=(99.6+2X33.58)X(600-298)
=50.36kJmor'
e
Z\t/„I(3)=zAH„,(3)-Zi(pV)^Z\rHffl(3)-n/?(7'2-rl)
=50.36-2X8.314X(600-298)=45.34kJ-mol”
Z^3)=,£nCP.m/TdT^nCp,nln(T2/Ti)=(99.6+2X33.58)/n(600/298)
=116.70JK-'
Z\G(3)=ZU(3)=
AH,n=AHm^+AHm(3)+Z\r/7„(°(2)=-56.23+50.36+104.8=98.93kJ-mo「
W=-pe(V2-Vi)^-pV=-2X8.314X600=-9.98kJ
1
ASm=AS,„(\}+AS,„(3)+/B/(2)=-130.31+116.7+290.39=276.78JK-
Z\U,"=Z\U“,(l)+Z\U,"(3)+Z\rU:(2)=-56.23+45.34+99.84=88.95kJmol1
Q=ZM「W=88.95+9.98=98.93kJ
AG,n=AGm{\}+AGm(3)+CrG,「(2)
AAm=ZU,“(1)+ZU,“(3)+/rA,「(2)
27解:
设计如下可逆途径:
(298K)I2(s)----->匕(0(457K)
[⑴f(4)
(387K)L⑤@12(1)(387K)为l2(D(457K)
△SQ)=15.66X103/387=40.47J-K-I
△S@=tnCp.MTdTX79.59加457/387=13.23J-K"
3
Z\S(4)=AvapH„/T=25.52X10/457=55.84J-K-'
△S=/S(1)+Z\S(2)+Z\S(3)+/S(4)=14.29+40.47+13.23+55.84=123.83JK
eO,,
S,„(457K,I2,g)=S„,(298K,I2,s)+Z\S=116.14+123.83=239.97JK--mor
物理化学习题解答(四)
习题p266〜270
1、在298K时,有0.10kg质量分数为0.947的硫酸H2s。4水溶液,试分别用(1)
质量摩尔浓度mB;(2)物质的量浓度CB和(3)摩尔分数期来表示硫酸的含量。已
知在该条件下,硫酸溶液的密度为1.0603Xl()3kg.m-3,纯水的密度为997.1kgm-3o
解:
加(B)=WBXX%=0.947X0.10kg=0.0947kg=94.7g
A
/iB=m(B)/MB=94.7/98.079=0.9655mol
-,〃(B)=0.10-0.0947=0.0053kg=5.3g
A
“A=m(A)/MA=5.3/l8.015=0.2942mol
⑴机B="B/""A)=0.9655/(5.3XW3)=182.17mol-kgI
(2)V=2%/P=0.10/(1.0603X103)=0.0943X10-3m3=0.0943dm3
A
1
cB=nB/V=0.9655/0.0943=10.24mol-L-
(3)XB=«B/Z%=0.9655/(0.9655+0.2942)=0.7664
A
2、在298K和大气压力下,含甲醇(B)的摩尔分数冲为0458的水溶液的密度为
0.8946kg-dm-3,甲醇的偏摩尔体积VB=39.80cm3.mo「,试求该水溶液中水的偏摩
尔体积VA«
解:
设〃B=L0mol,贝ijnii=〃B/xB=2.183mol,〃A=L183mol
〃?(B)=〃BMB=1.0X32.042=32.042g,6(A)=nAMA=1.183X18.015=21.312g
V={m(A)+机(B)}/=(21.312+32.042)/0.8946=59.64cm3
1
V=〃AVA+〃BVB,VA=(V-MBVB)/^A=(59.64-1.OX39.80)/1.183=16.77cm^mol-
3、在298K和大气压下,某酒窑中存有酒lO.On?,其中含乙醇的质量分数为0.96,
今欲加水调制含乙醇的质量分数为0.56的酒,已知该条件下,纯水的密度为999.1
kg.m0,水和乙醇的偏摩尔体积为:
63
w(C2H5OH)MH2O)/106m3.mo「V(C2H5OH)/10'mmor
0.9614.6158.01
0.5617.1156.58
试计算:
(1)应加入水的体积;
(2)加水后,能得到含乙醇的质量分数为0.56的酒的体积。
解:
(1)〃BMB/{几AMA+〃BMB}=0.96,46.068〃B/(18.015〃A+46.068即)=0.96,
18.015/7A+46.068〃B=46.068〃B/0.96=47.988几B,〃B=9.38"A
33
V=nAVA+nBVB=10.0m,(14.61nA+58.01nB)XlO^10.0m,
63
(14.61nA+58.01X9.38nA)X10-=10.0m,nA=17897.3mol,nB=167876.6mol,
n^M^I{〃/AMA+〃BMB}=0.56,
167876.6X46.068/(18.015〃么+167876.6X46.068)=0.56
18.015〃A+167876.6X46.068=167876.6X46.068/0.56=13810248.6
/
MA=337302.8mol,4=337302.8-17897.3=319405.5mol
pV*/l8.015=319405.5
V^=18.015X319405.5/999.1kg-m3=5.76m3
(2)V=/AVA+〃BVB=(337302.8X17.11+167876.6X56.58)X10-6=15.27m3
4、在298K和大气压下,甲醇(B)的摩尔分数&为0.30的水溶液中,水(A)和甲
3
醇(B)的偏摩尔体积分别为VA=17.765cm3.mo「,VB=38.632cm-mor',已知该条
件下,甲醇(B)和水(A)的摩尔体积为V„,.B=40.722cm3.mo「,匕”,A=18.068cm3.mo「,
现在需要配制上述水溶液1000cn?,试求:
(I)需要纯水和纯甲醇的体积;
(2)混合前后体积的变化值。
解:
3
(1)V=nAVA+wBVB=1000cm,17.765wA+38.632/jB=1000
n^M^I{〃AMA+〃BMB}=0.96,32.042/7B/(18.015HA+32.042HB)=0.30
18.015〃A+32.042〃B=32.042〃B/0.30=106.807〃B,;?A=4.15"B
17.765X4.15Z?B+38.632/?B=1000,/iB=8.900mol,HA=4.15HB=36.935mol
3
nAVm,A=36.935X18.068=667.34cm
3
Vw=Vm,B=8.900X40.722=362.43cm
(2)V水+V甲龄=667.34+362.43=1029.77cm3
Z\V=V混合前-V混合国=1029.77-1000=29.77cm3
5、在298K和大气压下,溶质NaCl(s)(B)溶于LOkgHzO⑴(A)中,所得溶液的体
积V与溶入NaCl(s)(B)的物质的量“B之间的关系式为:
3/223
V=[1001.38+1.625(nB/mol)+1.774(/7B/mol)+0.119(nB/mol)]cm
试求:(1)H2O(1)和NaCl的偏摩尔体积与溶入NaCl(s)的物质的量“B之间的关系;
(2)nB=0.5mol时-,氏0⑴和NaCl的偏摩尔体积;
(3)在无限稀释时,氏0⑴和NaCl的偏摩尔体积。
解:
3/223
(1)V=[1001.38+1.625(HB/mol)+1.774(rtB/mol)+0.119(/?B/mol)]cm
1/23
氏=(段)后[16.625+3/2X1.774(«B/mol)+2X0.119(nB/mol)]cm
(2)V=(1001.38+16.625X0.5+1.774X0.53/2+0.119X0.52)=1010.349cm3
1/231
VB=(16.625+3/2X1.774X0.5+2X0.119X0.5)=18.6256cm.mof
〃A=加(A)/MA=1.0X103/18.015=55.509mol
VA=(V-HBVB)/«A=(1010.349-0.5X18.6256)/55.509=18.0334cm3-mor'
33
(3)nB-*0,V=1001.38cm,VB=16.625cm,
3
VA=(V-/7BVB)//?A=1001.38/55.509=18.04cmmor'
6、在293K时、氨的水溶液A中NH3与H2O的量之比为1:8.5,溶液A上方NH3
的分压为10.64kPa,氨的水溶液B中NH3与H2O的量之比为1:21,溶液B上方
NH3的分压为3.579kPa,试求在相同的温度下:
(1)从大量的溶液A中转移lmolNH3(g)到大量的溶液B中的ZiG;
(2)将处于标准压力下的ImolNHKg)溶于大量的溶液B中的/G。
解:
⑴PNH3=Z3A^NH3,h,A=PNH3/-^NH3=10.64/(1/9.5)=101.18
PNH3=七即NH3,4X,B=PNH3/XNH3=3.579/(1/22)=78.738
〃NH3(A,aq)+nNH3(B,aq)-*(n-l)NH3(A,aq)+(/?+1)NH3(B,aq)
Z\G=(”+1)"2,B(aq)+(n-l)"2,A(aq)-nMi,B(aq)-”i,A(aq)
=(n+1)RTlnkx,BX2,B+(«-1)RTlnkx,AX2,/<-nRTlnkx.Bx\,^-nRTlnkx,AXi,A
*.*n,.,.X2,BQXI,B=XB=1/22,*2,人心为必=工人=1/9.5
AG=RTlnkx,B-RTlnkx,AXA
=8.314X293{加(78.738X1/22)-Zn(101.18X1/9.5)}=-2656.5J
(2)NH3(g)+〃NH3(B,aq)-(〃+l)NH3(B,aq)
o
Z\G=(”+1)“2,B(aq)-M⑺-〃“i,B(aq)
ee
=("+1)R77〃ZX,B/PX2,B-nRTlnk^pxi,B
n,.,.X2,BRSXI,B=XB=1/22
AG=RTlnk^lp°XZB=8.314X293/n(78.738/100X1/22)=-8112.1J
7、300K时,纯A与纯B形成理想混合物,试计算如下两种情况的Gibbs自由
能的变化值。
(1)从大量的等物质量的纯A与纯B形成的理想混合物中,分出Imol纯A的ZiG。
(2)从A与纯B各为2moi所形成的理想混合物中,分出Imol纯A的ZiG。
解:“AB-A⑴+(〃-l)AnB
(1)G2="A"(1)+(〃A-1)"2,A⑴+〃B"2,B(1),G|=MA»1,A⑴+〃B"1.B0)
△G=G2-G\=〃A*(1)+(〃-1)"2,A⑴+〃"2,B⑴-n«i,A(1)-nwi,B(1)
=(n-1)RTI〃X2,A-“RTl〃x[,A+〃RT(J〃X2,B-l〃xi,B)
Vrt-oo,•,.X2,AQX1A=XA=0-5,X2.BQ%1,B=XB=0.5,
故=-RTlnxA=-8.314X300勿0.5=1728.85J
(2)G2=«A(1)+M2,A(1)+2M2,B(1)»GI=2MI,A(1)+2WI,B(1)
△G=Gz-Gi="A*⑴+〃2,A(1)+2"2.B⑴-2M|.A(1)-2«I,B(1)
=RTlnx2.A+2RTlnxi^-2RTlnx\,\-2RTlnxI.B
=RT(lnx2,A+2lnxi,B-2lnx\,K-2lnxI.B)
,«,X2,A=1/3»X2.B=2/3,XI,A=XI,B=2/4=0.5,
:.AG=8.314X300X(//?1/3+2/〃2/3-2/〃0.5-2/«0.5)=2152.61J
10、在293K时,纯C6H6⑴(A)和C6H5cH3⑴(B)的蒸气压分别为9.96kPa和
2.97kPa,今以等质量的苯和甲苯混合形成理想液态混合物,试求:
(1)与液态混合物对应的气相中,苯和甲苯的分压;
(2)液面上蒸气的总压力。
解:
(1)PA=PA*XA=PA""?(A)/M\/[租(A)/MA+m(B)/MB)=PA如B/(MA+/B)
=9.96X92.138/(78.112+92.138)=5.39kPa
PB=PB*XB=PB*根(B)/MB/[根(A)/MA+〃Z(B)/MB)=PB"MA/(MA+MO
=2.97X78.112/(78.112+92.138)=1.36kPa
(2)p总=PA+〃B=5.39+1.36=6.75kPa
14、在室温下,液体A与液体B能形成理想液态混合物。现有一混合物的蒸气
相,其中A的摩尔分数为0.4,把它放在一个带活塞的汽缸内,在室温下将汽缸
缓慢压缩。已知纯液体A与B的饱和蒸气压分别为40.0kPa和120.0kPa,试求:
(1)当液体开始出现时,汽缸内气体的总压;
(2)当气体全部液化后,再开始汽化时气体的组成。
解:
(1)当PA=p.FyA=40.0kPa时,液体开始出现,故p总=40.0/0.4=lOOkPa
AAX;BB;
(2)/?=P*XA=40.0X0.4=16.0kPa/?=P*XxB=l20.0X0.6=72.0kPa
>A=PA(PA+PB)=16.0/(16.0+72.0)=0.182
),B=PB(PA+PB)=72.0/(16.0+72.0)=0.818
19、可以用不同的方法计算沸点升高常数。根据下列数据,分别计算CS2⑴的沸
点升高常数。
(1)3.20g的蔡(Go%)溶于50.0g的CS2⑴中,溶液的沸点较纯溶剂升高了1.17K;
(2)1.0g的CS2⑴在沸点319.45K时的汽化焰值为351.91g1;
(3)根据CS2⑴的蒸气压与温度的关系曲线,知道在大气压力101.325kPa及其沸
点。319.45K时,CS2⑴的蒸气压随温度的变化率为3239Pa.K」(见Clapeyron方程)。
解:
(1)kb=AT/mn=Z\T/[m(B)/(m(A)MB)
=1.17/(3.20/128.17/50.0X10-3)]=2.34K-mor'.kg
(2)kb=RM\(Tb*)2/Z\r卬H*m,A=8.314X319.52/351.9X10-3=2.41K-mol'-kg
f2
(3)dlnp/dT=AvapHmA/RT^kb=MA(dT/dlnp)
Ab=MAd77d/"p=MA/?d77dp=76.143X10-3x101325/3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 不良资产处置购买合同样本
- 简单的林地承包合同
- 二零二五合伙开办公司协议
- 众筹开公司合同样本
- 充电桩工程维护合同标准文本
- 扬尘防治措施方案
- 工程勘察设计委托分包合同二零二五年
- 小学四年级美术下册教学总结
- 保证食品安全的规章制度目录
- 2024年教师信息技术应用能力提升工程培训总结
- 2024年中国机械工业集团有限公司国机集团总部招聘笔试真题
- 高新技术企业认定代理服务协议书范本
- 安全生产、文明施工资金保障制度11142
- 中药性状鉴定技术知到课后答案智慧树章节测试答案2025年春天津生物工程职业技术学院
- 2025年全屋定制家居市场分析与经营计划
- 电动汽车结构原理与检修课件:慢充系统检修
- 专题09 产业区位与产业发展【知识精研】高考地理二轮复习
- 《陆上风电场工程概算定额》NBT 31010-2019
- 2024年山东省事业单位历年面试题目及答案解析50套
- 案例收球器盲板伤人事故
- 《雷锋叔叔_你在哪里》说课稿
评论
0/150
提交评论