专题6-1立体几何动点与外接球归类(原卷版)_第1页
专题6-1立体几何动点与外接球归类(原卷版)_第2页
专题6-1立体几何动点与外接球归类(原卷版)_第3页
专题6-1立体几何动点与外接球归类(原卷版)_第4页
专题6-1立体几何动点与外接球归类(原卷版)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题6-1立体几何动点与外接球归类目录TOC\o"1-1"\h\u题型01四大基础模型:三线垂直型 1题型02四大基础模型:对棱相等型 2题型03四大基础模型:直棱柱型 3题型04四大基础模型:双线交心型 4题型05垂面型外接球 5题型06二面角型外接球 6题型07四棱锥型外接球 8题型08圆锥形外接球 9题型09棱台型外接球 10题型10圆台型外接球 11题型11内切球型 12题型12最值型外接球 14题型13翻折型外接球 15题型14外接球计算截面 16高考练场 16题型01四大基础模型:三线垂直型【解题攻略】正方体的棱长为a,球的半径为R,则: ①若球为正方体的外接球,则2R=eq\r(3)a;②若球为正方体的内切球,则2R=a; ③球与正方体的各棱相切,则2R=eq\r(2)a.长方体的长、宽、高分别为a,b,c,则外接球直径=长方体对角线,即:2R=eq\r(a2+b2+c2).【典例1-1】在三棱锥中,点在平面中的投影是的垂心,若是等腰直角三角形且,,则三棱锥的外接球表面积为___________【典例1-2】.在正三棱锥中,,P到平面ABC的距离为2,则该三棱锥外接球的表面积为(

)A. B. C. D.【变式1-1】(2022上·江西萍乡·高三统考)三棱锥A-BCD中,平面BCD,,,则该三棱锥的外接球表面积为(

)A. B. C. D.【变式1-2】.(2020下·四川绵阳·高三统考)在边长为4的正方形中,,分别为,的中点.将,,分别沿,,折起,使,,三点重合于,则三棱锥的外接球表面积为(

)A. B. C. D.【变式1-3】(2018上·四川成都·高三成都外国语学校阶段练习)已知正方形ABCD的边长为4,E,F分别是BC,CD的中点,沿AE,EF,AF折成一个三棱锥P-AEF(使B,C,D重合于P),三棱锥P-AEF的外接球表面积为()A. B. C. D.题型02四大基础模型:对棱相等型【解题攻略】对棱相等的四面体:三棱锥对棱相等,【典例1-1】(2023·全国·高三专题练习)在三棱锥中,,,,则该三棱锥的外接球表面积是(

)A. B. C. D.【典例1-2】(2019下·江苏苏州·高三江苏省苏州实验中学校考阶段练习)在三棱锥中,、、两两重直,,,,则该三棱锥外接球表面积为.【变式1-1】如图,在三棱锥中,,,,则三棱锥外接球的体积为(

A. B. C. D.【变式1-2】在三棱锥中,,,,则三棱锥的外接球的表面积为(

)A. B. C. D.【变式1-3】在三棱锥P-ABC中,PA=BC=5,,,则三棱锥P-ABC的外接球的表面积为(

)A. B. C. D.题型03四大基础模型:直棱柱型【解题攻略】存在一条棱垂直一个底面(底面是任意多边形,实际是三角形或者四边形(少),它的外接圆半径是r,满足正弦定理)1.模板图形原理图1图22.计算公式【典例1-1】(2022上·河南·高三校联考专题练习)已知三棱锥中,平面,若,,,,则三棱锥的外接球表面积为(

)A. B. C. D.【典例1-2】.(2022下·四川成都·高三成都七中校考开学考试)在四棱锥中,底面为等腰梯形,底面.若,,则这个四棱锥的外接球表面积为(

)A. B. C. D.【变式1-1】(2023·河南开封·统考三模)在三棱锥中,,平面ABC,,,则三棱锥外接球体积的最小值为(

)A. B. C. D.【变式1-2】(2023·河北邯郸·统考三模)三棱锥中,平面,,.过点分别作,交于点,记三棱锥的外接球表面积为,三棱锥的外接球表面积为,则(

)A. B. C. D.【变式1-3】(2023·陕西咸阳·武功县普集高级中学统考二模)如图,四棱锥中,平面,底面为边长为的正方形,,则该四棱锥的外接球表面积为(

)A. B. C. D.题型04四大基础模型:双线交心型【解题攻略】解几何体外接球(表面积/体积)的一般方法和步骤为:1、寻找一个或两个面的外接圆圆心2、分别过两个面的外心作该面的垂线,两条垂线的交点即为外接圆圆心;3、构造直角三角形求解球半径,进而求出外接球表面积或体积.如果表面有等边三角形或者直角三角形:两垂线交心法包含了面面垂直(俩面必然是特殊三角形)等边或者直角:(1)等边三角形中心(外心)做面垂线,必过球心;(2)直角三角形斜边中点(外心)做面垂线,必过球心;【典例1-1】(2023下·四川绵阳·高三绵阳南山中学实验学校校考阶段练习)已知四棱锥的体积是,底面是正方形,是等边三角形,平面平面,则四棱锥外接球表面积为(

)A. B. C. D.【典例1-2】(2022·河南·校联考模拟预测)在三棱锥中,平面平面,和都是边长为的等边三角形,若为三棱锥外接球上的动点,则点到平面距离的最大值为(

)A. B.C. D.【变式1-1】(2021上·贵州·高三统考)在三棱锥中,,底面是等边三角形,三棱锥的体积为,则三棱锥的外接球表面积的最小值是(

)A. B. C. D.【变式1-2】(2022下·吉林·高三吉林一中校考)在三棱锥中,是边长为2的正三角形,且平面底面,,,则该三棱锥的外接球表面积为.【变式1-3】(2021上·江苏南京·高三统考开学考试)在三棱锥中,和都是边长为的正三角形,.若为三棱锥外接球上的动点,则点到平面距离的最大值为.题型05垂面型外接球【解题攻略】面面垂直型基本图形一般情况下,俩面是特殊三角形。垂面型,隐藏很深的线面垂直型,【典例1-1】(2020下·广东深圳·高三深圳市南山区华侨城中学校考阶段练习)在三棱锥中,,,,,平面平面,若球是三棱锥的外接球,则球的半径为.A. B. C. D.【典例1-2】(2021·高三课时练习)在边长为2的菱形中,,将菱形沿对角线折起,使得平面平面,则所得三棱锥的外接球表面积为(

)A. B. C. D.【变式1-1】(2023·全国·高三专题练习)如图,已知正方形的边长为4,若将沿翻折到的位置,使得平面平面,分别为和的中点,则直线被四面体的外接球所截得的线段长为(

)A. B. C. D.【变式1-2】(2023上·江苏连云港·高三校考)已知三棱锥,为中点,,侧面底面,则过点的平面截该三棱锥外接球所得截面面积的取值范围为(

)A. B. C. D.【变式1-3】(2023·全国·高三专题练习)在三棱锥中,,平面平面ABC,,点Q为三棱锥外接球O上一动点,且点Q到平面PAC的距离的最大值为,则球O的体积为(

)A. B.C. D..题型06二面角型外接球【解题攻略】二面角型求外接圆在空间四边形中,二面角的平面角大小为,的外接圆圆心为,的外接圆圆心为,为两面交线的中点所以因为四点共圆,,根据余弦定理可知【典例1-1】(2022·全国·高三专题练习)在菱形中,,将沿折起到的位置,若二面角的大小为,三棱锥的外接球球心为,的中点为,则A.1 B.2 C. D.【典例1-2】(2022上·湖南郴州·高三统考阶段练习)在边长为的菱形ABCD中,,沿对角边折成二面角为的四面体,则四面体外接球表面积为(

)A. B. C. D.【变式1-1】(2024·全国·高三专题练习)如图,在三棱锥,是以AC为斜边的等腰直角三角形,且,,二面角的大小为,则三棱锥的外接球表面积为(

)A. B. C. D.【变式1-2】(2023·全国·高三专题练习)在三棱锥中,为等腰直角三角形,,为正三角形,且二面角的平面角为,则三棱锥的外接球表面积为(

)A. B. C. D.【变式1-3】已知在三棱锥中,,,,二面角的大小为,则三棱锥的外接球的表面积为(

)A. B. C. D.题型07棱锥型外接球【解题攻略】锥体求外接球(1):确定球心的位置,取的外心,则三点共线;(2):算出小圆的半径,算出棱锥的高(即圆锥的高);(3):勾股定理:,解出【典例1-1】(2022上·浙江·高三校联考开学考试)已知四棱锥外接球表面积为,体积为平面,且,则的取值范围是(

)A. B. C. D.【典例1-2】(2022·湖北十堰·统考三模)在四棱锥中,底面ABCD是正方形,PA⊥底面ABCD,且PA=3,AB=4,则四棱锥外接球与内切球的表面积之比为(

)A. B.10 C. D.11【变式1-1】(2022·江西·校联考模拟预测)在平行四边形中,,现沿着将平面折起,E,F分别为和的中点,那么当四棱锥的外接球球心不在锥体内部时,的最大值为(

)A.1 B. C. D.【变式1-2】(2022·全国·模拟预测)如图1,平面五边形,,,,,将沿折起至平面平面,如图2,若,则四棱锥的外接球体积是(

)A. B. C. D.【变式1-3】(2022下·四川成都·高三成都七中校考开学考试)在四棱锥中,底面为等腰梯形,底面.若,,则这个四棱锥的外接球表面积为(

)A. B. C. D.题型08圆锥形外接球【解题攻略】类比正棱锥,可以得带圆锥型外接球【典例1-1】(2023下·浙江杭州·高三统考)圆锥内半径最大的球称为该圆锥的内切球,若圆锥的顶点和底面的圆周都在同一个球面上,则称该球为圆锥的外接球.如图,圆锥的内切球和外接球的球心重合,且圆锥的底面直径为,则(

A.设内切球的半径为,外接球的半径为,则B.设内切球的表面积,外接球的表面积为,则C.设圆锥的体积为,内切球的体积为,则D.设、是圆锥底面圆上的两点,且,则平面截内切球所得截面的面积为【典例1-2】(2023·安徽蚌埠·统考三模)已知为圆锥底面圆的直径,点是圆上异于,的一点,为的中点,,圆锥的侧面积为,则下列说法正确的是(

)A.圆上存在点使平面B.圆上存在点使平面C.圆锥的外接球表面积为D.棱长为的正四面体在圆锥内可以任意转动【变式1-1】(2021·安徽·校联考模拟预测)已知球是圆锥的外接球,圆锥的母线长是底面半径的倍,且球的表面积为,则圆锥的侧面积为.【变式1-2】圆锥(其中为顶点,为底面圆心)的侧面积与底面积的比是,则圆锥与它外接球(即顶点在球面上且底面圆周也在球面上)的体积比为A. B. C. D.【变式1-3】已知球是圆锥的外接球,圆锥的母线长是底面半径的倍,且球的表面积为,则圆锥的侧面积为___________.题型09棱台型外接球【解题攻略】正棱台外接球,以棱轴截面为主。,其中分别为圆台的上底面、下底面、高.基本规律:正棱台外接球,以棱轴截面为主【典例1-1】由正三棱锥截得的三棱台的高为,,.若三棱台的各顶点都在球的球面上,则球的表面积为______.【典例1-2】由正三棱锥截得的三棱台的各顶点都在球的球面上,若,三棱台的高为2,且球心在平面与平面之间(不在两平面上),则的取值范围为___________.【变式1-1】已知正三棱台的上下底边长分别为,高为7,若该正三棱台的六个顶点均在球的球面上,且球心在正三棱台内,则球的表面积为__________.【变式1-2】在正四棱台中,,则(

)A.该棱台的体积为,该棱台外接球的表面积为B.该棱台的体积为,该棱台外接球的表面积为C.该棱台的体积为,该棱台外接球的表面积为D.该棱台的体积为,该棱台外接球的表面积为【变式1-3】.如图,三棱台ABC-A1B1C1中,AB⊥AC,BC=6,A1B1=A1C1=4,AA1=5,平面BCC1B1⊥平面ABC,则该三棱台外接球的体积为()A. B. C. D.题型10圆台型外接球【解题攻略】圆台外接圆模型圆台外接球,即轴截面题型外接圆【典例1-1】(2023下·江西南昌·高三校联考阶段练习)如图,四边形ABCD是直角梯形,其中AB=1,CD=2,AD⊥DC,O是AD的中点,以AD为直径的半圆O与BC相切于点P.以AD为旋转轴旋转一周,可以得到一个球和一个圆台.给出以下结论,其中正确结论的个数是(

)①圆台的母线长为3;②球的半径为;③将圆台的母线延长交的延长线于点,则得到的圆锥的高为;④点的轨迹的长度是.A.1 B.2 C.3 D.4【典例1-2】(2023下·湖南益阳·高三统考)已知一个球与某圆台的上下底面和侧面均相切,若圆台的侧面积为,上下底面面积之比为1:9,则该球的表面积为(

)A. B. C. D.【变式1-1】(2023下·湖北咸宁·高三统考)已知球内切于圆台(即球与该圆台的上、下底面以及侧面均相切),且圆台的上、下底面半径,则圆台的体积与球的体积之比为(

A. B. C.2 D.【变式1-2】已知圆台上底半径为1,下底半径为3,高为2,则此圆台的外接球的表面积为______.【变式1-3】已知圆台的上下底面半径分别为1和2,侧面积为,则该圆台的外接球半径为(

)A. B. C. D.题型11内切球型【解题攻略】内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等,正多面体的内切球和外接球的球心重合,正棱锥的内切球和外接球球心都在高线上,但不重合.其中锥体与内切球的关系:(V为几何体的体积,S为多面体的表面积,r为内切球的半径)三角形内切圆类比:三棱锥【典例1-1】(2023·湖南郴州·统考一模)在圆锥中,母线,底面圆的半径为,圆锥的侧面积为,则(

)A.当时,则圆锥的体积为B.当时,过顶点和两母线的截面三角形的最大面积为C.当时,圆锥的外接球表面积为D.当时,棱长为的正四面体在圆锥内可以任意转动【典例1-2】.若正三棱柱既有外接球,又有内切球,记该三棱柱的外接球和内切球的半径分别为、,则(

)A. B. C. D.【变式1-1】古代数学名著《九章算术・商功》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为阳马,将四个面都为直角三角形的三棱锥称为鳖臑.若四棱锥为阳马,平面,,,则此“阳马”外接球与内切球的表面积之比为()A. B. C. D.【变式1-2】(2023·山东日照·统考二模)已知AB为圆锥SO底面圆O的直径,点C是圆O上异于A,B的一点,N为SA的中点,,圆锥SO的侧面积为,则下列说法正确的是(

)A.圆O上存在点M使∥平面SBCB.圆O上存在点M使平面SBCC.圆锥SO的外接球表面积为D.棱长为的正四面体在圆锥SO内可以任意转动【变式1-3】已知正四棱锥的底面边长为1,侧棱与底边夹角的余弦值为,则正四棱锥的外接球与内切球的半径之比为___________.题型12最值型外接球【典例1-1】在中,分别为三边中点,将分别沿向上折起,使重合,记为,则三棱锥的外接球表面积的最小值为A. B. C. D.【典例1-2】已知三棱锥的外接球O半径为2,球心O到所在平面的距离为1,则三棱锥体积的最大值为()A. B. C. D.3【变式1-1】已知四棱锥中,四边形为等腰梯形,,,是等边三角形,且;若点在四棱锥的外接球面上运动,记点到平面的距离为,若平面平面,则的最大值为()A. B.C. D.【变式1-2】如图,在体积为的三棱锥中,,,底面,则三棱锥外接球体积的最小值为______.【变式1-3】如图,已知等腰三角形的面积为,是底边的中点,将沿中线折起,得到三棱锥.若,则该三棱锥外接球表面积的最小值为______.题型13翻折型外接球【典例1-1】(2023·四川·四川省金堂中学校校联考三模)如图,在梯形ABCD中,,,,将△ACD沿AC边折起,使得点D翻折到点P,若三棱锥P-ABC的外接球表面积为,则(

)A.8 B.4 C. D.2【典例1-2】如图,在△ABC中,AB=2,BC=2,AC=2,E、F、G分别为三边中点,将△BEF,△AEG,△GCF分别沿EF、EG、GF向上折起,使A、B、C重合,记为S,则三棱锥S–EFG的外接球面积为()A.14π B.15π C.π D.2π【变式1-1】(2020·江西·统考模拟预测)已知矩形中,,,取线段,的中点,,连接,以线段为折痕进行翻折,使得,则四面体的外接球表面积为(

)A. B. C. D.【变式1-2】(2023·浙江·校联考模拟预测)如图1,直角梯形中,,取中点,将沿翻折(如图2),记四面体的外接球为球(为球心).是球上一动点,当直线与直线所成角最大时,四面体体积的最大值为(

)A. B. C. D.【变式1-3】已知等边的边长为,,分别为,的中点,将沿折起得到四棱锥.点为四棱锥的外接球球面上任意一点,当四棱锥的体积最大时,到平面距离的最大值为______.题型14外接球计算截面【典例1-1】已知球是正四面体的外接球,,点在线段上,且,过点作球的截面,则所得截面圆面积的最小值是()A. B. C. D.【典例1-2】已知球是棱长为1的正方体的外接球,为棱中点,现在棱和棱上分别取点,,使得平面与正方体各棱所成角相等,则平面截球的截面面积是__.【变式1-1】已知正方体的棱长2,中心为,则四棱锥的外接球被平面截得的截面面积为______.【变式1-2】如图,已知球O是直三棱柱的外接球,,,E,F分别为,的中点,过点A,E,F作三棱柱的截面α,若α交于M,过点M作球O的截面,则所得截面圆面积的最小值是__________.【变式1-3】已知正三棱锥的外接球是球,,,点为中点,过点作球的截面,则所得截面圆面积的取值范围是______.高考练场1.(2018上·四川成都·高三成都外国语学校阶段练习)已知正方形ABCD的边长为4,E,F分别是BC,CD的中点,沿AE,EF,AF折成一个三棱锥P-AEF(使B,C,D重合于P),三棱锥P-AEF的外接球表面积为()A. B. C. D.2.(2020·浙江杭州·高三)已知三棱锥中,,,.则该三棱锥的外接球表面积为.3.(2023上·四川广元·高三统考)三棱锥P-ABC中,PA⊥平面ABC,,△APC的面积为,则三棱锥P-ABC的外接球体积的最小值为(

)A. B. C. D.4.(2021·陕西渭南·统考一模)在三棱锥中,,底面是等边三角形,三棱锥的体积为,则三棱锥的外接球表面积的最小值是.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论