核磁共振法的基本原理是什么_第1页
核磁共振法的基本原理是什么_第2页
核磁共振法的基本原理是什么_第3页
核磁共振法的基本原理是什么_第4页
核磁共振法的基本原理是什么_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

核磁共振法的基本原理是什么?在材料研究中的应用如何?1、核磁共振(NMR)的基本原理:核磁共振是指原子核在外磁场作用下,其在能级之间共振跃迁的现象。原子核磁性的大小一般用磁矩L表示,L具有方向性,L=γhI,h是普朗克常数,I为自旋量子数,简称自旋。旋磁比γ实际上是原子核磁性大小的度量,γ值大表示原子核的磁性强,反之亦然。在天然同位素中,以氢原子核(质子)的γ值最大(42.6MHz/T),因此检测灵敏度最高,这也是质子首先被选择为NMR研究对象的重要原因之一。当把有磁矩的核置于某磁场中,该原子核在磁场的行为就好似陀螺的运动-拉莫尔进动,其频率由下式决定:ω=2πγ。式中ω为角频率,γ为拉莫尔进动频率。当外加射频场的频率与原子核的拉莫尔频率相等时,处于低能态的核便吸收射频能,从低能态跃迁到高能态,此即核磁共振现象。没有自旋的原子核(I=0)没有磁矩,这类核观察不到NMR信号,如14C,16O,32S等,I=½的原子核是NMR中研究得最多的核,如:1H,13C,19F,15N等。2、核磁共振技术的实验装置实现核磁共振可采取两种途径:一种是保持外磁场不变,而连续地改变入射电磁波频率;另一种是用一定频率的电磁波照射,而调节磁场的强弱。图1为核磁共振现象的装置示意图:采用调节入射电磁波频率的方法来达到核磁共振,样品装在小瓶中,并置于磁铁两极之间,瓶外绕有线圈,通有由射频振荡器输出的射频电流。于是,由线圈向样品发射电磁波。调制振荡器的作用是使射频电磁波的频率在样品共振频率附近连续变化,当频率正好与核磁共振频率吻合时,射频振荡器的输出就会出现一个吸收峰。这可以在示波器上显示出来。同时由频率计即刻读出这时的共振频率值。核磁共振谱仪是专门用于观测核磁共振的仪器,主要由磁铁、探头和谱仪三大部分组成。磁铁的功用是产生一个恒定的磁场;探头置于磁极之间,用于探测核磁共振信号;谱仪是将共振信号放大处理并显示和记录下来。随着核磁共振技术的发展,已研制出各种类型的核磁共振仪。3、核磁共振技术在材料研究中的应用核磁共振是交变磁场与物质相互作用的一种物理现象,最早于1946年被Bloch和Purcell等人用实验所证实。核磁共振的发现具有十分重要的意义,不仅为量子力学的基本原理提供了直接的验证,而且为多个学科领域的研究提供了一种不可或缺的分析与测量手段。核磁共振技术主要有两个学科分支:核磁共振波谱和磁共振成像。核磁共振波谱技术是基于化学位移理论发展起来的,主要用于测定物质的化学成分和分子结构。核磁共振成像技术诞生于1973年,它是一种无损测量技术,可以用于获取多种物质的内部结构图像。由于核磁共振可获取的信息丰富,因此应用领域十分广泛,如分析化学、生命科学、材料检测、石油勘探和水资源探查等。3.1在分子结构的测定中的应用核磁共振技术是测定分子结构的有效工具。现在已经测定了万余种有机化合物的核磁共振图,对分子结构的测定,包括对有机化合物绝对构型的测定和对复杂化合物结构的解析。应用核磁共振技术测定有机化合物的绝对构型,主要是测定R和(或)S手性试剂与底物反应的产物的1H或13CNMR化学位移数据,得到Δ值与模型比较来推断底物手性中心的绝对构型。有的情况下,我们要做更多的谱才能确定一个分子的结构,包括:1D只要有氢谱、碳谱、极化转移谱;2D有氢-氢化学位移相关谱、碳-氢化学转移相关谱、远程化学位移相关谱以及J-分解谱等。对复杂化合物结构解析是核磁共振技术最为主要的应用。利用这项技术可以获得化合物丰富的分子结构信息,广泛应用于天然产物的结构解析。在分析天然产物中,核磁共振仪的检出限较其它波谱分析仪器高,这对于产率较低的天然产物化合物来说无疑是一种瓶颈制约因素。不过,近期在仪器的相关技术上有了一些技术革新,并正在走向成熟。3.2在有机合成反应中的应用核磁共振技术在有机合成中,不仅可对反应物或产物进行结构解析和构型确定,在研究合成反应中的电荷分布及其定位效应、探讨反应机理等方面也有着广泛应用。核磁共振谱能够精细地表征出各个H核或C核的电荷分布状况,通过研究配合物中金属离子与配体的相互作用,从微观层次上阐明配合物的性质与结构的关系。对有机合成反应机理的研究主要是对其产物结构的研究和动力学数据的推测来实现的。另外,通过对有机反应过程中间产物及副产物的辨别鉴定,可以研究有关有机反应历程及考察合成路线是否可行等问题。3.3在定量分析和分子量测定中的应用核磁共振谱峰的面积(积分高度)正比于相应质子数,这不仅用于结构的分析中,同样可用于定量分析。用NMR定量分析的最大优点就是不需要引进任何校正因子或绘制工作曲线,NMR可以用于多组分混合物分析、元素的分析、有机物中活泼氢及重氢试剂的分析等。3.4在高分子化学中的应用聚合物固体宽谱线NMR可以提供有关结晶度、聚合物取向、玻璃化温度(T)等有关信息。还可以通过研究聚合反应过程NMR谱线宽度的变化,了解反应过程中正在生长聚合物链的活动度变化,从而获得有关聚合反应动力学方面的信息。聚合物液体高分辨NMR可以提供聚合物的信息有:①聚合物类型的鉴定;②有关聚合物链的异构化信息;③通过13C-NMR谱可以分别研究其不同单元组的序列分布、交替度和不同反应条件下聚合过程链活动度变化等聚合物微观结构信息。参考文献:[1]陈建,严文等.材料研究方法.北京.化学工业出版社.2011.[2]毛希安.NMR前沿领域的若干新进展[J].化学通报,199

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论