版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黔东南市重点中学2024-2025学年高三下学期第六次月考数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,分别是椭圆的左、右焦点,过的直线交椭圆于,两点,且,,则椭圆的离心率为()A. B. C. D.2.已知函数,则()A. B. C. D.3.已知复数(为虚数单位,),则在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如图是正方体截去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是()A. B. C. D.5.在中,,则=()A. B.C. D.6.已知非零向量,满足,,则与的夹角为()A. B. C. D.7.已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则()A.,b为任意非零实数 B.,a为任意非零实数C.a、b均为任意实数 D.不存在满足条件的实数a,b8.函数的一个零点在区间内,则实数a的取值范围是()A. B. C. D.9.若函数在处有极值,则在区间上的最大值为()A. B.2 C.1 D.310.M、N是曲线y=πsinx与曲线y=πcosx的两个不同的交点,则|MN|的最小值为()A.π B.π C.π D.2π11.若双曲线:的一条渐近线方程为,则()A. B. C. D.12.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:,)A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若的展开式中各项系数之和为32,则展开式中x的系数为_____14.(x+y)(2x-y)5的展开式中x3y3的系数为________.15.在中,,.若,则_________.16.函数在区间(-∞,1)上递增,则实数a的取值范围是____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面,底面是矩形,,,分别是,的中点.(Ⅰ)求证:平面;(Ⅱ)设,求三棱锥的体积.18.(12分)已知函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若存在满足不等式,求实数的取值范围.19.(12分)设函数,,其中,为正实数.(1)若的图象总在函数的图象的下方,求实数的取值范围;(2)设,证明:对任意,都有.20.(12分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程;(2)若点,为曲线上两动点,且满足,求面积的最大值.21.(12分)在三角形ABC中,角A,B,C的对边分别为a,b,c,若,角为钝角,(1)求的值;(2)求边的长.22.(10分)如图,设A是由个实数组成的n行n列的数表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的实数,且aij{1,-1}.记S(n,n)为所有这样的数表构成的集合.对于,记ri(A)为A的第i行各数之积,cj(A)为A的第j列各数之积.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)请写出一个AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?说明理由;(Ⅲ)给定正整数n,对于所有的AS(n,n),求l(A)的取值集合.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
根据表示出线段长度,由勾股定理,解出每条线段的长度,再由勾股定理构造出关系,求出离心率.【详解】设,则由椭圆的定义,可以得到,在中,有,解得在中,有整理得,故选C项.本题考查几何法求椭圆离心率,是求椭圆离心率的一个常用方法,通过几何关系,构造出关系,得到离心率.属于中档题.2.A【解析】
根据分段函数解析式,先求得的值,再求得的值.【详解】依题意,.故选:A本小题主要考查根据分段函数解析式求函数值,属于基础题.3.B【解析】
分别比较复数的实部、虚部与0的大小关系,可判断出在复平面内对应的点所在的象限.【详解】因为时,所以,,所以复数在复平面内对应的点位于第二象限.故选:B.本题考查复数的几何意义,考查学生的计算求解能力,属于基础题.4.C【解析】
根据三视图作出几何体的直观图,结合三视图的数据可求得几何体的体积.【详解】根据三视图还原几何体的直观图如下图所示:由图可知,该几何体是在棱长为的正方体中截去四棱锥所形成的几何体,该几何体的体积为.故选:C.本题考查利用三视图计算几何体的体积,考查空间想象能力与计算能力,属于基础题.5.B【解析】
在上分别取点,使得,可知为平行四边形,从而可得到,即可得到答案.【详解】如下图,,在上分别取点,使得,则为平行四边形,故,故答案为B.本题考查了平面向量的线性运算,考查了学生逻辑推理能力,属于基础题.6.B【解析】
由平面向量垂直的数量积关系化简,即可由平面向量数量积定义求得与的夹角.【详解】根据平面向量数量积的垂直关系可得,,所以,即,由平面向量数量积定义可得,所以,而,即与的夹角为.故选:B本题考查了平面向量数量积的运算,平面向量夹角的求法,属于基础题.7.A【解析】
求得的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得,为任意非零实数.【详解】依题意,在点处的切线与直线AB平行,即有,所以,由于对任意上式都成立,可得,为非零实数.故选:A本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于中档题.8.C【解析】
显然函数在区间内连续,由的一个零点在区间内,则,即可求解.【详解】由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,故选:C本题考查零点存在性定理的应用,属于基础题.9.B【解析】
根据极值点处的导数为零先求出的值,然后再按照求函数在连续的闭区间上最值的求法计算即可.【详解】解:由已知得,,,经检验满足题意.,.由得;由得或.所以函数在上递增,在上递减,在上递增.则,,由于,所以在区间上的最大值为2.故选:B.本题考查了导数极值的性质以及利用导数求函数在连续的闭区间上的最值问题的基本思路,属于中档题.10.C【解析】
两函数的图象如图所示,则图中|MN|最小,设M(x1,y1),N(x2,y2),则x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故选C.11.A【解析】
根据双曲线的渐近线列方程,解方程求得的值.【详解】由题意知双曲线的渐近线方程为,可化为,则,解得.故选:A本小题主要考查双曲线的渐近线,属于基础题.12.C【解析】
由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出.【详解】由题意可得莞草与蒲草第n天的长度分别为据题意得:,解得2n=12,∴n21.故选:C.本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.2025【解析】
利用赋值法,结合展开式中各项系数之和列方程,由此求得的值.再利用二项式展开式的通项公式,求得展开式中的系数.【详解】依题意,令,解得,所以,则二项式的展开式的通项为:令,得,所以的系数为.故答案为:2025本小题主要考查二项式展开式各项系数之和,考查二项式展开式指定项系数的求法,属于基础题.14.40【解析】
先求出的展开式的通项,再求出即得解.【详解】设的展开式的通项为,令r=3,则,令r=2,则,所以展开式中含x3y3的项为.所以x3y3的系数为40.故答案为:40本题主要考查二项式定理求指定项的系数,意在考查学生对这些知识的理解掌握水平.15.【解析】分析:首先设出相应的直角边长,利用余弦勾股定理得到相应的斜边长,之后应用余弦定理得到直角边长之间的关系,从而应用正切函数的定义,对边比临边,求得对应角的正切值,即可得结果.详解:根据题意,设,则,根据,得,由勾股定理可得,根据余弦定理可得,化简整理得,即,解得,所以,故答案是.点睛:该题考查的是有关解三角形的问题,在解题的过程中,注意分析要求对应角的正切值,需要求谁,而题中所给的条件与对应的结果之间有什么样的连线,设出直角边长,利用所给的角的余弦值,利用余弦定理得到相应的等量关系,求得最后的结果.16.【解析】
根据复合函数单调性同增异减,结合二次函数的性质、对数型函数的定义域列不等式组,解不等式求得的取值范围.【详解】由二次函数的性质和复合函数的单调性可得解得.故答案为:本小题主要考查根据对数型复合函数的单调性求参数的取值范围,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)见解析(Ⅱ)【解析】
(Ⅰ)取中点,连,,根据平行四边形,可得,进而证得平面平面,利用面面垂直的性质,得平面,又由,即可得到平面.(Ⅱ)根据三棱锥的体积公式,利用等积法,即可求解.【详解】(Ⅰ)取中点,连,,由,可得,可得是平行四边形,则,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中点,则,而平面平面,而,∴平面.(Ⅱ)根据三棱锥的体积公式,得.本题主要考查了空间中线面位置关系的判定与证明,以及利用“等体积法”求解三棱锥的体积,其中解答中熟记线面位置关系的判定定理和性质定理,以及合理利用“等体积法”求解是解答的关键,着重考查了推理与论证能力,属于基础题.18.(Ⅰ)或.(Ⅱ)【解析】
(Ⅰ)分类讨论解绝对值不等式得到答案.(Ⅱ)讨论和两种情况,得到函数单调性,得到只需,代入计算得到答案.【详解】(Ⅰ)当时,不等式为,变形为或或,解集为或.(Ⅱ)当时,,由此可知在单调递减,在单调递增,当时,同样得到在单调递减,在单调递增,所以,存在满足不等式,只需,即,解得.本题考查了解绝对值不等式,不等式存在性问题,意在考查学生的计算能力和综合应用能力.19.(1)(2)证明见解析【解析】
(1)据题意可得在区间上恒成立,利用导数讨论函数的单调性,从而求出满足不等式的的取值范围;(2)不等式整理为,由(1)可知当时,,利用导数判断函数的单调性从而证明在区间上成立,从而证明对任意,都有.【详解】(1)解:因为函数的图象恒在的图象的下方,所以在区间上恒成立.设,其中,所以,其中,.①当,即时,,所以函数在上单调递增,,故成立,满足题意.②当,即时,设,则图象的对称轴,,,所以在上存在唯一实根,设为,则,,,所以在上单调递减,此时,不合题意.综上可得,实数的取值范围是.(2)证明:由题意得,因为当时,,,所以.令,则,所以在上单调递增,,即,所以,从而.由(1)知当时,在上恒成立,整理得.令,则要证,只需证.因为,所以在上单调递增,所以,即在上恒成立.综上可得,对任意,都有成立.本题考查导数在研究函数中的作用,利用导数判断函数单调性与求函数最值,利用导数证明不等式,属于难题.20.(1);(2)【解析】
(1)消去参数,将圆的参数方程,转化为普通方程,再由圆心到直线的距离等于半径,可求得圆的普通方程,最后利用求得圆的极坐标方程.(2)利用圆的参数方程以及辅助角公式,由此求得的面积的表达式,再由三角函数最值的求法,求得三角形面积的最大值.【详解】(1)由题意得:,:因为曲线和相切,所以,即:;(2)设,所以所以当时,面积最大值为本小题主要考查参数方程转化为普通方程,考查直角坐标方程转化为极坐标方程,考查利用参数的方法求三角形面积的最值,属于中档题.21.(1)(2)【解析】
(1)由,分别求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.【详解】(1)因为角为钝角,,所以,又,所以,且,所以.(2)因为,且,所以,又,则,所以.22.(Ⅰ)答案见解析;(Ⅱ)不存在,理由见解析;(Ⅲ)【解析】
(Ⅰ)可取第一行都为-1,其余的都取1,即满足题意;(Ⅱ)用反证法证明:假设存在,得出矛盾,从而证明结论;(Ⅲ)通过分析正确得出l(A)的表达式,以及从A0如何得到A1,A2……,以此类推可得到Ak.【详解】(Ⅰ)答案不唯一,如图所示数表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,证明如下:假如存在,使得.因为,,所以,,...,,,,...,这18个数中有9个1,9个-1.令.一方面,由于这18个数中有9个1,9个-1,从而①,另一方面,表示数表中所有元素之积(记这81个实数之积为m);也表示m,从而②,①,②相矛盾,从而不存在,使
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《分离工程》2022-2023学年第一学期期末试卷
- 2023年黑龙江省绥化市望奎县住房和城乡建设局公务员考试《行政职业能力测验》历年真题及详解
- 淮阴师范学院《灯光照明艺术与技术》2022-2023学年第一学期期末试卷
- 淮阴师范学院《BIM实务》2023-2024学年第一学期期末试卷
- 淮阴工学院《液压与气压传动》2023-2024学年第一学期期末试卷
- 淮阴工学院《图形创意》2021-2022学年第一学期期末试卷
- 2024-2025学年北师版八年级数学上学期 期中综合模拟测试卷1
- 儿童语言发展与教育策略考核试卷
- 水利工程在渔业发展中的贡献与支持考核试卷
- 危险品仓储纸制品管理考核试卷
- 初中语文人教七年级上册要拿我当一挺机关枪使用
- 人教版数学三年级上册《分数的初步认识》课件 (共7张PPT)
- 5000吨每年聚丙烯酰胺工艺流程图
- DB64∕T 1754-2020 宁夏砖瓦用粘土矿产地质勘查技术规程
- PSUR模板仅供参考
- 火力发电企业作业活动风险分级管控清单(参考)
- 《锅炉水容积测试技术规范》团体标准
- 全国第四轮学科评估PPT幻灯片课件(PPT 24页)
- 子宫内膜息肉-PPT课件
- 桥梁施工各工序质量控制措施
- 保安队排班表
评论
0/150
提交评论