版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宁夏银川市兴庆区长庆高中2025届高三冲刺模拟(5)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的单调递增区间是()A. B. C. D.2.已知椭圆,直线与直线相交于点,且点在椭圆内恒成立,则椭圆的离心率取值范围为()A. B. C. D.3.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为A. B. C. D.4.若,则的虚部是A.3 B. C. D.5.《九章算术》是我国古代数学名著,书中有如下问题:“今有勾六步,股八步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为6步和8步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是()A. B. C. D.6.M、N是曲线y=πsinx与曲线y=πcosx的两个不同的交点,则|MN|的最小值为()A.π B.π C.π D.2π7.已知函数,,的零点分别为,,,则()A. B.C. D.8.函数(其中是自然对数的底数)的大致图像为()A. B. C. D.9.已知实数,则下列说法正确的是()A. B.C. D.10.下列说法正确的是()A.“若,则”的否命题是“若,则”B.“若,则”的逆命题为真命题C.,使成立D.“若,则”是真命题11.阅读如图的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是()A. B. C. D.12.设直线的方程为,圆的方程为,若直线被圆所截得的弦长为,则实数的取值为A.或11 B.或11 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为_______.14.“”是“”的__________条件.(填写“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)15.一个四面体的顶点在空间直角坐标系中的坐标分别是,,,,则该四面体的外接球的体积为__________.16.若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,,,.求边上的高.①,②,③,这三个条件中任选一个,补充在上面问题中并作答.18.(12分)已知椭圆的离心率为,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于两点,是否存在实数k使得以线段为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.19.(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量(件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数的分布列和数学期望.20.(12分)已知不等式对于任意的恒成立.(1)求实数m的取值范围;(2)若m的最大值为M,且正实数a,b,c满足.求证.21.(12分)选修4-5:不等式选讲已知函数.(1)设,求不等式的解集;(2)已知,且的最小值等于,求实数的值.22.(10分)等差数列的公差为2,分别等于等比数列的第2项,第3项,第4项.(1)求数列和的通项公式;(2)若数列满足,求数列的前2020项的和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
利用辅助角公式,化简函数的解析式,再根据正弦函数的单调性,并采用整体法,可得结果.【详解】因为,由,解得,即函数的增区间为,所以当时,增区间的一个子集为.故选D.本题考查了辅助角公式,考查正弦型函数的单调递增区间,重点在于把握正弦函数的单调性,同时对于整体法的应用,使问题化繁为简,难度较易.2.A【解析】
先求得椭圆焦点坐标,判断出直线过椭圆的焦点.然后判断出,判断出点的轨迹方程,根据恒在椭圆内列不等式,化简后求得离心率的取值范围.【详解】设是椭圆的焦点,所以.直线过点,直线过点,由于,所以,所以点的轨迹是以为直径的圆.由于点在椭圆内恒成立,所以椭圆的短轴大于,即,所以,所以双曲线的离心率,所以.故选:A本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题.3.A【解析】
求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,,求出等式左边式子的范围,将等式右边代入,从而求解.【详解】解:由题意可得,焦点F(1,0),准线方程为x=−1,
过点P作PM垂直于准线,M为垂足,
由抛物线的定义可得|PF|=|PM|=x+1,
记∠KPF的平分线与轴交于
根据角平分线定理可得,,当时,,当时,,,综上:.故选:A.本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题.4.B【解析】
因为,所以的虚部是.故选B.5.C【解析】
利用直角三角形三边与内切圆半径的关系求出半径,再分别求出三角形和内切圆的面积,根据几何概型的概率计算公式,即可求解.【详解】由题意,直角三角形的斜边长为,利用等面积法,可得其内切圆的半径为,所以向次三角形内投掷豆子,则落在其内切圆内的概率为.故选:C.本题主要考查了面积比的几何概型的概率的计算问题,其中解答中熟练应用直角三角形的性质,求得其内切圆的半径是解答的关键,着重考查了推理与运算能力.6.C【解析】
两函数的图象如图所示,则图中|MN|最小,设M(x1,y1),N(x2,y2),则x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故选C.7.C【解析】
转化函数,,的零点为与,,的交点,数形结合,即得解.【详解】函数,,的零点,即为与,,的交点,作出与,,的图象,如图所示,可知故选:C本题考查了数形结合法研究函数的零点,考查了学生转化划归,数形结合的能力,属于中档题.8.D【解析】由题意得,函数点定义域为且,所以定义域关于原点对称,且,所以函数为奇函数,图象关于原点对称,故选D.9.C【解析】
利用不等式性质可判断,利用对数函数和指数函数的单调性判断.【详解】解:对于实数,,不成立对于不成立.对于.利用对数函数单调递增性质,即可得出.对于指数函数单调递减性质,因此不成立.故选:.利用不等式性质比较大小.要注意不等式性质成立的前提条件.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.10.D【解析】选项A,否命题为“若,则”,故A不正确.选项B,逆命题为“若,则”,为假命题,故B不正确.选项C,由题意知对,都有,故C不正确.选项D,命题的逆否命题“若,则”为真命题,故“若,则”是真命题,所以D正确.选D.11.C【解析】
根据循环结构的程序框图,带入依次计算可得输出为25时的值,进而得判断框内容.【详解】根据循环程序框图可知,则,,,,,此时输出,因而不符合条件框的内容,但符合条件框内容,结合选项可知C为正确选项,故选:C.本题考查了循环结构程序框图的简单应用,完善程序框图,属于基础题.12.A【解析】
圆的圆心坐标为(1,1),该圆心到直线的距离,结合弦长公式得,解得或,故选A.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】由分层抽样的知识可得,即,所以高三被抽取的人数为,应填答案.14.充分不必要【解析】
由余弦的二倍角公式可得,即或,即可判断命题的关系.【详解】由,所以或,所以“”是“”的充分不必要条件.故答案为:充分不必要本题考查命题的充分条件与必要条件的判断,考查余弦的二倍角公式的应用.15.【解析】
将四面体补充为长宽高分别为的长方体,体对角线即为外接球的直径,从而得解.【详解】采用补体法,由空间点坐标可知,该四面体的四个顶点在一个长方体上,该长方体的长宽高分别为,长方体的外接球即为该四面体的外接球,外接球的直径即为长方体的体对角线,所以球半径为,体积为.本题主要考查了四面体外接球的常用求法:补体法,通过补体得到长方体的外接球从而得解,属于基础题.16.【解析】
因为,由二倍角公式得到,故得到.故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.详见解析【解析】
选择①,利用正弦定理求得,利用余弦定理求得,再计算边上的高.选择②,利用正弦定理得出,由余弦定理求出,再求边上的高.选择③,利用余弦定理列方程求出,再计算边上的高.【详解】选择①,在中,由正弦定理得,即,解得;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.选择②,在中,由正弦定理得,又因为,所以,即;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.选择③,在中,由,得;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.本小题主要考查真闲的了、余弦定理解三角形,属于中档题.18.(1);(2)存在,当时,以线段为直径的圆恰好经过坐标原点O.【解析】
(1)设椭圆的焦半距为,利用离心率为,椭圆的长轴长为1.列出方程组求解,推出,即可得到椭圆的方程.(2)存在实数使得以线段为直径的圆恰好经过坐标原点.设点,,,,将直线的方程代入,化简,利用韦达定理,结合向量的数量积为0,转化为:.求解即可.【详解】解:(1)设椭圆的焦半距为c,则由题设,得,解得,所以,故所求椭圆C的方程为(2)存在实数k使得以线段为直径的圆恰好经过坐标原点O.理由如下:设点,,将直线的方程代入,并整理,得.(*)则,因为以线段为直径的圆恰好经过坐标原点O,所以,即.又,于是,解得,经检验知:此时(*)式的,符合题意.所以当时,以线段为直径的圆恰好经过坐标原点O本题考查椭圆方程的求法,椭圆的简单性质,直线与椭圆位置关系的综合应用,考查计算能力以及转化思想的应用,属于中档题.19.(1)乙同学正确(2)分布列见解析,【解析】
(1)由已知可得甲不正确,求出样本中心点代入验证,即可得出结论;(2)根据(1)中得到的回归方程,求出估值,得到“理想数据”的个数,确定“理想数据”的个数的可能值,并求出概率,得到分布列,即可求解.【详解】(1)已知变量具有线性负相关关系,故甲不正确,,代入两个回归方程,验证乙同学正确,故回归方程为:(2)由(1)得到的回归方程,计算估计数据如下表:“理想数据”有3个,故“理想数据”的个数的取值为:.,,于是“理想数据”的个数的分布列本题考查样本回归中心点与线性回归直线方程关系,以及离散型随机变量的分布列和期望,意在考查逻辑推理、数学计算能力,属于中档题.20.(1)(2)证明见解析【解析】
(1)法一:,,得,则,由此可得答案;法二:由题意,令,易知是偶函数,且时为增函数,由此可得出答案;(2)由(1)知,,即,结合“1”的代换,利用基本不等式即可证明结论.【详解】解:(1)法一:(当且仅当时取等号),又(当且仅当时取等号),所以(当且仅当时取等号),由題意得,则,解得,故的取值范围是;法二:因为对于任意恒有成立,即,令,易知是偶函数,且时为增函数,所以,即,则,解得,故的取值范围是;(2)由(1)知,,即,∴,故不等式成立.本题主要考查绝对值不等式的恒成立问题,考查基本不等式的应用,属于中档题.21.(1)(2)【解析】
(1)把f(x)去绝对值写成分段函数的形式,分类讨论,分别求得解集,综合可得结论.(2)把f(x)去绝对值写成分段函数,画出f(x)的图像,找出利用条件求得a的值.【详解】(1)时,.当时,即为,解得.当时,,解得.当时,,解得.综上,的解集为.(2).,由的图象知,,.本题主要考查含绝对值不等式的解法及含绝对值的函数的最值问题,体现了分类讨论的数学思想,属于中档题22.(1),;(2).【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全风险抵押金制度
- 牛头刨床课程设计28
- 电子信号课程设计
- 全过程跟踪审计合同
- 货运业务讲解课程设计
- 三级医师负责制度
- 换热器课程设计书丁玉兴
- 课程设计中效率怎么求
- 广美成考课程设计
- 窗户拆装合同
- 新公司筹备计划方案(2篇)
- 抖音电商培训
- MOOC 英汉交替传译-东北大学 中国大学慕课答案
- 校企共建实训室合作方案
- 五年级信息科技上全册教案 浙教版2023年
- (2024年)版ISO9001质量管理体系培训教材
- 小班语言活动《送颜色》课件
- 小班社会《帮帮小兔》课件
- 思修第二章第三节做忠诚的爱国者
- 2024年少先队基础知识考试试题
- 2024年中央民族大学招考聘用高频考题难、易错点模拟试题(共500题)附带答案详解
评论
0/150
提交评论