贵州省黔西南市重点达标名校2023-2024学年中考押题数学预测卷含解析_第1页
贵州省黔西南市重点达标名校2023-2024学年中考押题数学预测卷含解析_第2页
贵州省黔西南市重点达标名校2023-2024学年中考押题数学预测卷含解析_第3页
贵州省黔西南市重点达标名校2023-2024学年中考押题数学预测卷含解析_第4页
贵州省黔西南市重点达标名校2023-2024学年中考押题数学预测卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省黔西南市重点达标名校2023-2024学年中考押题数学预测卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为()A. B. C.3 D.2.一元一次不等式2(1+x)>1+3x的解集在数轴上表示为()A. B. C. D.3.是两个连续整数,若,则分别是().A.2,3 B.3,2 C.3,4 D.6,84.下列安全标志图中,是中心对称图形的是()A. B. C. D.5.济南市某天的气温:-5~8℃,则当天最高与最低的温差为()A.13 B.3 C.-13 D.-36.已知圆锥的侧面积为10πcm2,侧面展开图的圆心角为36°,则该圆锥的母线长为()A.100cm B.cm C.10cm D.cm7.下列美丽的壮锦图案是中心对称图形的是()A. B. C. D.8.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.99.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x元,则有()A.(x﹣20)(50﹣)=10890 B.x(50﹣)﹣50×20=10890C.(180+x﹣20)(50﹣)=10890 D.(x+180)(50﹣)﹣50×20=1089010.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是()A. B. C. D.11.“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为A. B. C. D.12.“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567×103B.56.7×104C.5.67×105D.0.567×106二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为.14.如图,在矩形ABCD中,AB=8,AD=6,点E为AB上一点,AE=2,点F在AD上,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上时,折痕EF的长为_____.15.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是.16.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.17.在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标______.18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?20.(6分)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由.在图①中,若EG=4,GF=6,求正方形ABCD的边长.21.(6分)计算.22.(8分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?23.(8分)解不等式组24.(10分)如图所示,小王在校园上的A处正面观测一座教学楼墙上的大型标牌,测得标牌下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45°.若该楼高为16.65m,小王的眼睛离地面1.65m,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(≈1.732,结果精确到0.1m).25.(10分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.证明:S矩形ABCD=S1+S2+S3=2,S4=,S5=,S6=+,S阴影=S1+S6=S1+S2+S3=.26.(12分)如图1,已知抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).27.(12分)(1)计算:(﹣2)2﹣+(+1)2﹣4cos60°;(2)化简:÷(1﹣)

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】∵∠AED=∠B,∠A=∠A

∴△ADE∽△ACB∴,∵DE=6,AB=10,AE=8,∴,解得BC=.故选A.2、B【解析】

按照解一元一次不等式的步骤求解即可.【详解】去括号,得2+2x>1+3x;移项合并同类项,得x<1,所以选B.【点睛】数形结合思想是初中常用的方法之一.3、A【解析】

根据,可得答案.【详解】根据题意,可知,可得a=2,b=1.故选A.【点睛】本题考查了估算无理数的大小,明确是解题关键.4、B【解析】试题分析:A.不是中心对称图形,故此选项不合题意;B.是中心对称图形,故此选项符合题意;C.不是中心对称图形,故此选项不符合题意;D.不是中心对称图形,故此选项不合题意;故选B.考点:中心对称图形.5、A【解析】由题意可知,当天最高温与最低温的温差为8-(-5)=13℃,故选A.6、C【解析】

圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长.【详解】设母线长为R,则圆锥的侧面积==10π,∴R=10cm,故选C.【点睛】本题考查了圆锥的计算,熟练掌握扇形面积是解题的关键.7、A【解析】【分析】根据中心对称图形的定义逐项进行判断即可得.【详解】A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误,故选A.【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.8、A【解析】

解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选A.9、C【解析】

设房价比定价180元増加x元,根据利润=房价的净利润×入住的房同数可得.【详解】解:设房价比定价180元增加x元,根据题意,得(180+x﹣20)(50﹣)=1.故选:C.【点睛】此题考查一元二次方程的应用问题,主要在于找到等量关系求解.10、B【解析】

连接OA、OB,利用正方形的性质得出OA=ABcos45°=2,根据阴影部分的面积=S⊙O-S正方形ABCD列式计算可得.【详解】解:连接OA、OB,∵四边形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×=2,所以阴影部分的面积=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故选B.【点睛】本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.11、C【解析】分析:一个绝对值大于10的数可以表示为的形式,其中为整数.确定的值时,整数位数减去1即可.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.详解:1800000这个数用科学记数法可以表示为故选C.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.12、C【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】567000=5.67×105,【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、18。【解析】根据二次函数的性质,抛物线的对称轴为x=3。∵A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴。∴A,B关于x=3对称。∴AB=6。又∵△ABC是等边三角形,∴以AB为边的等边三角形ABC的周长为6×3=18。14、4或4.【解析】

①当AF<AD时,由折叠的性质得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,过E作EH⊥MN于H,由矩形的性质得到MH=AE=2,根据勾股定理得到A′H=,根据勾股定理列方程即可得到结论;②当AF>AD时,由折叠的性质得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,过A′作HG∥BC交AB于G,交CD于H,根据矩形的性质得到DH=AG,HG=AD=6,根据勾股定理即可得到结论.【详解】①当AF<AD时,如图1,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,设MN是BC的垂直平分线,则AM=AD=3,过E作EH⊥MN于H,则四边形AEHM是矩形,∴MH=AE=2,∵A′H=,∴A′M=,∵MF2+A′M2=A′F2,∴(3-AF)2+()2=AF2,∴AF=2,∴EF==4;②当AF>AD时,如图2,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,设MN是BC的垂直平分线,过A′作HG∥BC交AB于G,交CD于H,则四边形AGHD是矩形,∴DH=AG,HG=AD=6,∴A′H=A′G=HG=3,∴EG==,∴DH=AG=AE+EG=3,∴A′F==6,∴EF==4,综上所述,折痕EF的长为4或4,故答案为:4或4.【点睛】本题考查了翻折变换-折叠问题,矩形的性质和判定,勾股定理,正确的作出辅助线是解题的关键.15、①③⑤【解析】

①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;

②过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;

③利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;

④连接BD,求出△ABD的面积,然后减去△BDP的面积即可;

⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面积.【详解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,

∴∠EAB=∠PAD,

又∵AE=AP,AB=AD,

∵在△APD和△AEB中,

∴△APD≌△AEB(SAS);

故此选项成立;

③∵△APD≌△AEB,

∴∠APD=∠AEB,

∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,

∴∠BEP=∠PAE=90°,

∴EB⊥ED;

故此选项成立;

②过B作BF⊥AE,交AE的延长线于F,

∵AE=AP,∠EAP=90°,

∴∠AEP=∠APE=45°,

又∵③中EB⊥ED,BF⊥AF,

∴∠FEB=∠FBE=45°,

又∵BE=

=

=

∴BF=EF=

故此选项不正确;

④如图,连接BD,在Rt△AEP中,

∵AE=AP=1,

∴EP=

又∵PB=

∴BE=

∵△APD≌△AEB,

∴PD=BE=

∴S

△ABP+S

△ADP=S

△ABD-S

△BDP=

S

正方形ABCD-

×DP×BE=

×(4+

)-

×

×

=

+

故此选项不正确.

⑤∵EF=BF=

,AE=1,

∴在Rt△ABF中,AB

2=(AE+EF)

2+BF

2=4+

∴S

正方形ABCD=AB

2=4+

故此选项正确.

故答案为①③⑤.【点睛】本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.16、3.1或4.32或4.2【解析】【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.【详解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB==5,S△ABC=AB•BC=1.沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=•S△ABC=×1=3.1;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD=,∴AD=DP==1.2,∴AP=2AD=3.1,∴S等腰△ABP=•S△ABC=×1=4.32;③当CB=CP=4时,如图3所示,S等腰△BCP=•S△ABC=×1=4.2;综上所述:等腰三角形的面积可能为3.1或4.32或4.2,故答案为:3.1或4.32或4.2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.17、(2,2).【解析】

连结OA,根据勾股定理可求OA,再根据点与圆的位置关系可得一个符合要求的点B的坐标.【详解】如图,连结OA,OA==5,∵B为⊙O内一点,∴符合要求的点B的坐标(2,2)答案不唯一.故答案为:(2,2).【点睛】考查了点与圆的位置关系,坐标与图形性质,关键是根据勾股定理得到OA的长.18、4.1【解析】解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(1﹣x)2=(x+2)2,解得:x=4.1,∴AP=4.1;故答案为4.1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、客房8间,房客63人【解析】

设该店有间客房,以人数相等为等量关系列出方程即可.【详解】设该店有间客房,则解得答:该店有客房8间,房客63人.【点睛】本题考查的是利用一元一次方程解决应用题,根据题意找到等量关系式是解题的关键.20、(1)45°.(1)MN1=ND1+DH1.理由见解析;(3)11.【解析】

(1)先根据AG⊥EF得出△ABE和△AGE是直角三角形,再根据HL定理得出△ABE≌△AGE,故可得出∠BAE=∠GAE,同理可得出∠GAF=∠DAF,由此可得出结论;(1)由旋转的性质得出∠BAM=∠DAH,再根据SAS定理得出△AMN≌△AHN,故可得出MN=HN.再由∠BAD=90°,AB=AD可知∠ABD=∠ADB=45°,根据勾股定理即可得出结论;(3)设正方形ABCD的边长为x,则CE=x-4,CF=x-2,再根据勾股定理即可得出x的值.【详解】解:(1)在正方形ABCD中,∠B=∠D=90°,∵AG⊥EF,∴△ABE和△AGE是直角三角形.在Rt△ABE和Rt△AGE中,,∴△ABE≌△AGE(HL),∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴∠EAF=∠EAG+∠FAG=∠BAD=45°.(1)MN1=ND1+DH1.由旋转可知:∠BAM=∠DAH,∵∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN.在△AMN与△AHN中,,∴△AMN≌△AHN(SAS),∴MN=HN.∵∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°.∴∠HDN=∠HDA+∠ADB=90°.∴NH1=ND1+DH1.∴MN1=ND1+DH1.(3)由(1)知,BE=EG=4,DF=FG=2.设正方形ABCD的边长为x,则CE=x-4,CF=x-2.∵CE1+CF1=EF1,∴(x-4)1+(x-2)1=101.解这个方程,得x1=11,x1=-1(不合题意,舍去).∴正方形ABCD的边长为11.【点睛】本题考查的是几何变换综合题,涉及到三角形全等的判定与性质、勾股定理、正方形的性质等知识,难度适中.21、【解析】分析:先计算,再做除法,结果化为整式或最简分式.详解:.点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.22、(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析【解析】分析:(1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;(2)根据学校总人数乘以骑自行车所占的百分比,可得答案.详解:(1)乘公交车所占的百分比=,调查的样本容量50÷=300人,骑自行车的人数300×=100人,骑自行车的人数多,多100﹣50=50人;(2)全校骑自行车的人数2400×=800人,800>600,故学校准备的600个自行车停车位不足够.点睛:本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23、﹣1≤x<1.【解析】

分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<1,则不等式组的解集为﹣1≤x<1.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.24、大型标牌上端与下端之间的距离约为3.5m.【解析】试题分析:将题目中的仰俯角转化为直角三角形的内角的度数,分别求得CE和BE的长,然后求得DE的长,用CE的长减去DE的长即可得到上端和下端之间的距离.试题解析:设AB,CD的延长线相交于点E,∵∠CBE=45°,CE⊥AE,∴CE=BE,∵CE=16.65﹣1.65=15,∴BE=15,而AE=AB+BE=1.∵∠DAE=30°,∴DE==11.54,∴CD=CE﹣DE=15﹣11.54≈3.5(m),答:大型标牌上端与下端之间的距离约为3.5m.25、S1,S3,S4,S5,1【解析】

利用图形的拼割,正方形的性质,寻找等面积的图形,即可解决问题.【详解】由题意:S矩形ABCD=S1+S1+S3=1,S4=S1,S5=S3,S6=S4+S5,S阴影面积=S1+S6=S1+S1+S3=1.故答案为S1,S3,S4,S5,1.【点睛】考查正方形的性质、矩形的性质、扇形的面积等知识,解题的关键是灵活运用所学知识解决问题.26、(1)抛物线的解析式是y=x2﹣3x;(2)D点的坐标为(4,﹣4);(3)点P的坐标是()或().【解析】试题分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;

(2)首先求出直线OB的解析式为y=x,进而将二次

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论