![贵州省六盘水市六枝特区第九中学2023-2024学年中考考前最后一卷数学试卷含解析_第1页](http://file4.renrendoc.com/view8/M01/24/27/wKhkGWbmW26AQsJDAAID9b9Wvxs608.jpg)
![贵州省六盘水市六枝特区第九中学2023-2024学年中考考前最后一卷数学试卷含解析_第2页](http://file4.renrendoc.com/view8/M01/24/27/wKhkGWbmW26AQsJDAAID9b9Wvxs6082.jpg)
![贵州省六盘水市六枝特区第九中学2023-2024学年中考考前最后一卷数学试卷含解析_第3页](http://file4.renrendoc.com/view8/M01/24/27/wKhkGWbmW26AQsJDAAID9b9Wvxs6083.jpg)
![贵州省六盘水市六枝特区第九中学2023-2024学年中考考前最后一卷数学试卷含解析_第4页](http://file4.renrendoc.com/view8/M01/24/27/wKhkGWbmW26AQsJDAAID9b9Wvxs6084.jpg)
![贵州省六盘水市六枝特区第九中学2023-2024学年中考考前最后一卷数学试卷含解析_第5页](http://file4.renrendoc.com/view8/M01/24/27/wKhkGWbmW26AQsJDAAID9b9Wvxs6085.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省六盘水市六枝特区第九中学2023-2024学年中考考前最后一卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图所示:有理数在数轴上的对应点,则下列式子中错误的是()A. B. C. D.2.如图,在中,E为边CD上一点,将沿AE折叠至处,与CE交于点F,若,,则的大小为()A.20° B.30° C.36° D.40°3.函数的图像位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.下列运算正确的是()A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2•x﹣3=x﹣15.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为(
)A.4 B.﹣4 C.﹣6 D.66.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是(
)A.16cm B.18cm C.20cm D.21cm7.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10 B.9 C.8 D.78.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数这些运动员跳高成绩的中位数是()A. B. C. D.9.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31° B.28° C.62° D.56°10.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.若式子在实数范围内有意义,则x的取值范围是.12.百子回归图是由1,2,3,…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19991220”标示澳门回归日期,最后一行中间两位“2350”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为______.百子回归13.如图,△ABC中,AB=5,AC=6,将△ABC翻折,使得点A落到边BC上的点A′处,折痕分别交边AB、AC于点E,点F,如果A′F∥AB,那么BE=_____.14.如图,将△AOB以O为位似中心,扩大得到△COD,其中B(3,0),D(4,0),则△AOB与△COD的相似比为_____.15.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲.16.如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是__________.三、解答题(共8题,共72分)17.(8分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?18.(8分)先化简,再求值:(),其中=19.(8分)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.判断直线MN与⊙O的位置关系,并说明理由;若OA=4,∠BCM=60°,求图中阴影部分的面积.20.(8分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.21.(8分)如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设=,=,求向量关于、的分解式.22.(10分)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.23.(12分)先化简,再求代数式()÷的值,其中x=sin60°,y=tan30°.24.如图,抛物线y=x2﹣2mx(m>0)与x轴的另一个交点为A,过P(1,﹣m)作PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(1)若m=2,求点A和点C的坐标;(2)令m>1,连接CA,若△ACP为直角三角形,求m的值;(3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
从数轴上可以看出a、b都是负数,且a<b,由此逐项分析得出结论即可.【详解】由数轴可知:a<b<0,A、两数相乘,同号得正,ab>0是正确的;
B、同号相加,取相同的符号,a+b<0是正确的;
C、a<b<0,,故选项是错误的;
D、a-b=a+(-b)取a的符号,a-b<0是正确的.
故选:C.【点睛】此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答.2、C【解析】
由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,由三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【详解】∵四边形ABCD是平行四边形,∴,由折叠的性质得:,,∴,,∴;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.3、D【解析】
根据反比例函数中,当,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【详解】解:函数的图象位于第四象限.故选:D.【点睛】此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键.4、D【解析】分析:根据合并同类项法则,同底数幂相除,积的乘方的性质,同底数幂相乘的性质,逐一判断即可.详解:根据合并同类项法则,可知x3+x3=2x3,故不正确;根据同底数幂相除,底数不变指数相加,可知a6÷a2=a4,故不正确;根据积的乘方,等于各个因式分别乘方,可知(-3a3)2=9a6,故不正确;根据同底数幂相乘,底数不变指数相加,可得x2•x﹣3=x﹣1,故正确.故选D.点睛:此题主要考查了整式的相关运算,是一道综合性题目,熟练应用整式的相关性质和运算法则是解题关键.5、C【解析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=403…2,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.详解:当y=0时,﹣x(x﹣5)=0,解得x1=0,x2=5,则A1(5,0),∴OA1=5,∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…;如此进行下去,得到一“波浪线”,∴A1A2=A2A3=…=OA1=5,∴抛物线C404的解析式为y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1,即m=﹣1.故选C.点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.6、C【解析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.考点:平移的性质.7、D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.8、C【解析】
根据中位数的定义解答即可.【详解】解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1.
所以这些运动员跳高成绩的中位数是1.1.
故选:C.【点睛】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.9、D【解析】
先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.10、C【解析】
根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.【详解】解:A、是轴对称图形,不是中心对称图形,故A错误;B、是轴对称图形,不是中心对称图形,故B错误;C、既是轴对称图形,也是中心对称图形,故C正确;D、既不是轴对称图形,也不是中心对称图形,故D错误;故选:C.【点睛】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.二、填空题(本大题共6个小题,每小题3分,共18分)11、.【解析】
根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.故答案为12、505【解析】
根据已知得:百子回归图是由1,2,3…,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和÷10,代入求解即可.【详解】1~100的总和为:=5050,
一共有10行,且每行10个数之和均相等,所以每行10个数之和为:n=5050÷10=505,故答案为505.【点睛】本题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案13、【解析】
设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依据△A'CF∽△BCA,可得,即=,进而得到BE=.【详解】解:如图,由折叠可得,∠AFE=∠A'FE,∵A'F∥AB,∴∠AEF=∠A'FE,∴∠AEF=∠AFE,∴AE=AF,由折叠可得,AF=A'F,设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,∵A'F∥AB,∴△A'CF∽△BCA,∴,即=,解得x=,∴BE=,故答案为:.【点睛】本题主要考查了折叠问题以及相似三角形的判定与性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.14、3:1.【解析】∵△AOB与△COD关于点O成位似图形,
∴△AOB∽△COD,
则△AOB与△COD的相似比为OB:OD=3:1,
故答案为3:1(或).15、.【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(2a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=3.∵正方形的中心在原点O,∴直线AB的解析式为:x=2.∵点P(2a,a)在直线AB上,∴2a=2,解得a=3.∴P(2,3).∵点P在反比例函数(k>0)的图象上,∴k=2×3=2.∴此反比例函数的解析式为:.16、10.5【解析】
先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.三、解答题(共8题,共72分)17、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元.【解析】
(1)设每次降价的百分率为x,(1﹣x)2为两次降价后的百分率,40元降至32.4元就是方程的等量条件,列出方程求解即可;(2)设每天要想获得110元的利润,且更有利于减少库存,则每件商品应降价y元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4x=10%或190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率为10%;(2)设每天要想获得110元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得解得:=1.1,=2.1,∵有利于减少库存,∴y=2.1.答:要使商场每月销售这种商品的利润达到110元,且更有利于减少库存,则每件商品应降价2.1元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.18、【解析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a的值代入化简后的式子得出答案.详解:原式=将原式=点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.19、(1)相切;(2).【解析】试题分析:(1)MN是⊙O切线,只要证明∠OCM=90°即可.(2)求出∠AOC以及BC,根据S阴=S扇形OAC﹣S△OAC计算即可.试题解析:(1)MN是⊙O切线.理由:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BCM=∠BOC,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2∴S阴=S扇形OAC﹣S△OAC=.考点:直线与圆的位置关系;扇形面积的计算.20、(1)证明见解析;(2).【解析】
(1)由切线的性质可知∠DAB=90°,由直角所对的圆周为90°可知∠ACB=90°,根据同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性质可知∠B=∠OCB,由对顶角的性质可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE•AD,故此可求得DE=,于是可求得AE=.【详解】解:(1)∵AD是圆O的切线,∴∠DAB=90°.∵AB是圆O的直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB,∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴,即.解得:DE=,∴AE=AD﹣DE=.21、答案见解析【解析】试题分析:连接BD,由已知可得MN是△BCD的中位线,则MN=BD,根据向量减法表示出BD即可得.试题解析:连接BD,∵点M、N分别是边DC、BC的中点,∴MN是△BCD的中位线,∴MN∥BD,MN=BD,∵,∴.22、(1)证明见解析;(2)1【解析】
(1)根据正方形的性质得到AB=BC,∠A=∠CBN=90°,∠1+∠2=90°,根据垂线和三角形内角和定理得到∠2+∠3=90°,推出∠1=∠3,根据ASA推出△ABE≌△BCN;(2)tan∠ABE=AEAB【详解】(1)证明:∵四边形ABCD为正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∠A=∴△ABE≌△BCN(ASA);(2)∵N为AB中点,∴BN=12又∵△ABE≌△BCN,∴AE=BN=12在Rt△ABE中,tan∠ABE═AEAB【点睛】本题主要考查了正方形的性质、三角形的内角和定理、垂线、全等三角形的性质和判定以及锐角三角函数等知识点的掌握和理解,证出△ABE≌△BCN是解此题的关键.23、【解析】
先根据分式混合运算的法则把原式进行化简,再计算x和y的值并代入进行计算即可【详解】原式∴原式【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.24、(1)A(4,0),C(3,﹣3);(2)m=;(3)E点的坐标为(2,0)或(,0)或(0,﹣4);【解析】
方法一:(1)m=2时,函数解析式为y=,分别令y=0,x=1,即可求得点A和点B的坐标,进而可得到点C的坐标;(2)先用m表示出P,AC三点的坐标,分别讨论∠APC=,∠ACP=,∠PAC=三种情况,利用勾股定理即可求得m的值;(3)设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,可得Rt△FNP∽Rt△PBC,NP:NF=BC:BP求得直线PE的解析式,后利用△PEC是以P为直角顶点的等腰直角三角形求得E点坐标.方法二:(1)同方法一.(2)由△ACP为直角三角形,由相互垂直的两直线斜率相乘为-1,可得m的值;(3)利用△PEC是以P为直角顶点的等腰直角三角形,分别讨论E点再x轴上,y轴上的情况求得E点坐标.【详解】方法一:解:(1)若m=2,抛物线y=x2﹣2mx=x2﹣4x,∴对称轴x=2,令y=0,则x2﹣4x=0,解得x=0,x=4,∴A(4,0),∵P(1,﹣2),令x=1,则y=﹣3,∴B(1,﹣3),∴C(3,﹣3).(2)∵抛物线y=x2﹣2mx(m>1),∴A(2m,0)对称轴x=m,∵P(1,﹣m)把x=1代入抛物线y=x2﹣2mx,则y=1﹣2m,∴B(1,1﹣2m),∴C(2m﹣1,1﹣2m),∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,AC2=1+(1﹣2m)2=2﹣4m+4m2,∵△ACP为直角三角形,∴当∠ACP=90°时,PA2=PC2+AC2,即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,解得:m=,m=1(舍去),当∠APC=90°时,PA2+PC2=AC2,即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,解得:m=,m=1,和1都不符合m>1,故m=.(3)设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,∵∠FPN=∠PCB,∠PNF=∠CBP=90°,∴Rt△FNP∽Rt△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 买卖合同协议书模板
- 互助领域战略合作合同框架
- 二手车团购代理销售合同
- 事业单位岗位聘任合同模板
- 个人房产抵押融资合同模板
- 个人向企业借款合同书(版)
- 中欧科技创新技术许可合同探讨
- 一篇文章读懂应届生就业合同细则
- 二手房销售合同实施细则
- 个人与公司租车服务合同
- 物业客服管家的培训课件
- 2024年房地产行业的楼市调控政策解读培训
- 《统计学-基于Python》 课件全套 第1-11章 数据与Python语言-时间序列分析和预测
- 《GMP实务教程》 完整全套教学课件 项目1-14 GMP基础知识-药品生产行政检查
- 装饰定额子目(河南省)
- 【高速铁路乘务工作存在的问题及对策研究9800字】
- 北师大版英语课文同步字帖三年级下册课文对话原文及翻译衡水体英语字帖三年级起点
- GB/T 2550-2016气体焊接设备焊接、切割和类似作业用橡胶软管
- GB/T 21295-2014服装理化性能的技术要求
- 走向核心素养深度学习的教学实践课件
- Y2系列电机样本
评论
0/150
提交评论