重庆市巴南区鱼洞南区学校2023年数学八上期末达标测试试题【含解析】_第1页
重庆市巴南区鱼洞南区学校2023年数学八上期末达标测试试题【含解析】_第2页
重庆市巴南区鱼洞南区学校2023年数学八上期末达标测试试题【含解析】_第3页
重庆市巴南区鱼洞南区学校2023年数学八上期末达标测试试题【含解析】_第4页
重庆市巴南区鱼洞南区学校2023年数学八上期末达标测试试题【含解析】_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市巴南区鱼洞南区学校2023年数学八上期末达标测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C. D.22.小李家去年节余50000元,今年可节余95000元,并且今年收入比去年高15%,支出比去年低10%,今年的收入与支出各是多少?设去年的收入为x元,支出为y元,则可列方程组为()A. B.C. D.3.已知、均为正整数,且,则()A. B. C. D.4.如图,已知∠1=∠2,AC=AD,增加下列条件:其中不能使△ABC≌△AED的条件()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E5.设是三角形的三边长,且满足,关于此三角形的形状有以下判断:①是直角三角形;②是等边三角形;③是锐角三角形;④是钝角三角形,其中正确的说法的个数有()A.1个 B.2个 C.3个 D.4个6.如图①,从边长为的正方形中剪去一个边长为的小正方形,然后将剩余部分剪拼成一个长方形(如图②),则上述操作所能验证的公式是()A. B.C. D.7.下列命题是假命题的是()A.对顶角相等 B.两直线平行,同旁内角相等C.平行于同一条直线的两直线平行 D.同位角相等,两直线平行8.如图是人字型金属屋架的示意图,该屋架由BC、AC、BA、AD四段金属材料焊接而成,其中A、B、C、D四点均为焊接点,且AB=AC,D为BC的中点,假设焊接所需的四段金属材料已截好,并已标出BC段的中点D,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是()A.AB和AD,点A B.AB和AC,点BC.AC和BC,点C D.AD和BC,点D9.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,若点G是AE中点且∠AOG=30°,则下列结论正确的个数为()(1)△OGE是等边三角形;(2)DC=3OG;(3)OG=BC;(4)S△AOE=S矩形ABCDA.1个 B.2个 C.3个 D.4个10.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB//CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个 B.2个 C.3个 D.4个11.下列四个数中,是无理数的是()A. B. C. D.12.下面是一名学生所做的4道练习题:①;②;③,④,他做对的个数是()A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.,则__________.14.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是____________15.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是.16.如图,已知中,,,边AB的中垂线交BC于点D,若BD=4,则CD的长为_______.17.已知点,点关于轴对称,点在第___________象限.18.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B、C、D的面积依次为4、3、9,则正方形A的面积为_______.三、解答题(共78分)19.(8分)如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.求证:BE=CF.20.(8分)如图,锐角△ABC的两条高BE、CD相交于点O,且OB=OC,∠A=60°.(1)求证:△ABC是等边三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.21.(8分)如图,在等边△ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF、EF的长.22.(10分)铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?23.(10分)已知一次函数y=kx+b的图象过A(1,1)和B(2,﹣1)(1)求一次函数y=kx+b的表达式;(2)求直线y=kx+b与坐标轴围成的三角形的面积;(3)将一次函数y=kx+b的图象沿y轴向下平移3个单位,则平移后的函数表达式为,再向右平移1个单位,则平移后的函数表达式为.24.(10分)计算:3a3b·(-1ab)+(-3a1b)1.25.(12分)如图,由5个全等的正方形组成的图案,请按下列要求画图:(1)在图案(1)中添加1个正方形,使它成轴对称图形但不是中心对称图形.(2)在图案(2)中添加1个正方形,使它成中心对称图形但不是轴对称图形.(3)在图案(3)中添加1个正方形,使它既成轴对称图形,又成中心对称图形.26.已知关于x的一元二次方程(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为1.当△ABC是等腰三角形时,求k的值

参考答案一、选择题(每题4分,共48分)1、B【分析】根据平行四边形性质得出AB=DC,AD∥BC,推出∠DEC=∠BCE,求出∠DEC=∠DCE,推出DE=DC=AB,得出AD=2DE即可.【详解】解:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3,故选B.【点睛】本题考查了平行四边形性质,平行线性质,角平分线定义,等腰三角形的性质和判定的应用,关键是求出DE=AE=DC.2、B【解析】根据题意可得等量关系:①去年的收入-支出=50000元;②今年的收入-支出=95000元,根据等量关系列出方程组即可.【详解】设去年的收入为x元,支出为y元,由题意得:,故选:B.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中等量关系.3、C【分析】根据幂的乘方,把变形为,然后把代入计算即可.【详解】∵,∴=.故选C.【点睛】本题考查了幂的乘方运算,熟练掌握幂的乘方法则是解答本题的关键.幂的乘方底数不变,指数相乘.4、B【解析】∵∠1=∠2,

∴∠1+∠EAB=∠2+∠EAB,

∴∠CAB=∠DAE,

A、添加AB=AE可利用SAS定理判定△ABC≌△AED,故此选项符合题意;

B、添加CB=DE不能判定△ABC≌△AED,故此选项符合题意;

C、添加∠C=∠D可利用ASA定理判定△ABC≌△AED,故此选项符合题意;

D、添加∠B=∠E可利用AAS定理判定△ABC≌△AED,故此选项符合题意;

故选B.【点睛】判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5、B【分析】先将原式转化为完全平方公式,再根据非负数的性质得出.进而判断即可.【详解】∵,

∴,

即,

∴,

∴此三角形为等边三角形,同时也是锐角三角形.

故选:B.【点睛】本题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键.6、A【分析】由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式.【详解】由大正方形的面积-小正方形的面积=矩形的面积得故答案为:A.【点睛】本题考查了平方差公式的证明,根据题意列出方程得出平方差公式是解题的关键.7、B【解析】解:A.对顶角相等是真命题,故本选项正确,不符合题意;B.两直线平行,同旁内角互补,故本选项错误,符合题意;C.平行于同一条直线的两条直线平行是真命题,故本选项正确,不符合题意;D.同位角相等,两直线平行是真命题,故本选项正确,不符合题意.故选B.8、D【分析】根据全等三角形的判定定理SSS推知△ABD≌△ACD,则∠ADB=∠ADC=90°.【详解】解:根据题意知,∵在△ABD与△ACD中,,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC=90°,∴AD⊥BC,根据焊接工身边的工具,显然是AD和BC焊接点D.故选:D.【点睛】本题考查了全等三角形的应用.巧妙地借助两个三角形全等,寻找角与角间是数量关系.9、C【分析】根据直角三角形斜边上的中线等于斜边的一半可得OG=AG=GE=AE,再根据等边对等角可得∠OAG=30°,根据直角三角形两锐角互余求出∠GOE=60°,从而判断出△OGE是等边三角形,判断出(1)正确;设AE=2a,根据等边三角形的性质表示出OE,利用勾股定理列式求出AO,从而得到AC,再求出BC,然后利用勾股定理列式求出AB=3a,从而判断出(2)正确,(3)错误;再根据三角形的面积和矩形的面积列式求出判断出(4)正确.【详解】解:∵EF⊥AC,点G是AE中点,∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°﹣∠AOG=90°﹣30°=60°,∴△OGE是等边三角形,故(1)正确;设AE=2a,则OE=OG=a,由勾股定理得,AO===a,∵O为AC中点,∴AC=2AO=2a,∴BC=AC=×2a=a,在Rt△ABC中,由勾股定理得,AB==3a,∵四边形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(2)正确;∵OG=a,BC=a,∴OG≠BC,故(3)错误;∵S△AOE=a•a=a2,SABCD=3a•a=3a2,∴S△AOE=SABCD,故(4)正确;综上所述,结论正确是(1)(2)(4),共3个.故选:C.【点睛】本题考查矩形的性质,直角三角形斜边上的中线等于斜边的一半,等边三角形的判定,含30°角的直角三角形.熟练掌握相关定理,并能通过定理推出线段之间的数量关系是解决此题的关键.10、C【分析】根据轴对称图形的性质,四边形ABCD沿直线l对折能够完全重合,再根据两直线平行,内错角相等可得∠CAD=∠ACB=∠BAC=∠ACD,然后根据内错角相等,两直线平行即可判定AB∥CD,根据等角对等边可得AB=BC,然后判定出四边形ABCD是菱形,根据菱形的对角线互相垂直平分即可判定AO=OC;只有四边形ABCD是正方形时,AB⊥BC才成立.【详解】∵l是四边形ABCD的对称轴,

∴∠CAD=∠BAC,∠ACD=∠ACB,

∵AD∥BC,

∴∠CAD=∠ACB,

∴∠CAD=∠ACB=∠BAC=∠ACD,

∴AB∥CD,AB=BC,故①②正确;

又∵l是四边形ABCD的对称轴,

∴AB=AD,BC=CD,

∴AB=BC=CD=AD,

∴四边形ABCD是菱形,

∴AO=OC,故④正确,

∵菱形ABCD不一定是正方形,

∴AB⊥BC不成立,故③错误,

综上所述,正确的结论有①②④共3个.

故选:C.11、A【解析】试题分析:根据无理数是无限不循环小数,可得A.是无理数,B.,C.,D.是有理数,故选A.考点:无理数12、B【分析】根据零次幂、积的乘方、完全平方公式、负整数指数幂进行判断.【详解】解:①,正确;②,错误;③,错误;④,正确.故选B.【点睛】本题考查了整式乘法和幂的运算,正确掌握运算法则是解题关键.二、填空题(每题4分,共24分)13、1【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可求解.【详解】∵,

∴x-8=0,y+2=0,

∴x=8,y=-2,

∴x+y=8+(-2)=1.

故答案为:1.【点睛】此题考查算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.14、或【分析】根据等腰三角形的性质和可得,,根据特殊三角函数值即可求出,即可求出这个等腰三角形的底角度数.【详解】根据题意,作如下等腰三角形,AB、AC为腰,,①顶角是锐角∵,∴,∵∴∴∴∴②顶角是钝角∵,∴,∵∴∴∴∴故答案为:或.【点睛】本题考查了等腰三角形的度数问题,掌握等腰三角形的性质、特殊三角函数值是解题的关键.15、.【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB,BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).16、【分析】连接AD,根据中垂线的性质可得AD=4,进而得到,,最后根据勾股定理即可求解.【详解】解:连接AD∵边AB的中垂线交BC于点D,BD=4∴AD=4∵,∴∴∴故答案为:.【点睛】此题主要考查中垂线的性质、角所对的直角边等于斜边的一半、勾股定理,熟练掌握性质是解题关键.17、四【分析】关于x轴对称,则横坐标相等,纵坐标互为相反数,求出a,b的值即可.【详解】已知点,点关于轴对称,则,解得,则点在第四象限.【点睛】本题是对坐标关于x轴对称的考查,熟练掌握二元一次方程组是解决本题的关键.18、1【解析】根据勾股定理的几何意义:得到S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,求解即可.【详解】由题意:S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,∴S正方形A+S正方形B=S正方形D﹣S正方形C.∵正方形B,C,D的面积依次为4,3,9,∴S正方形A+4=9﹣3,∴S正方形A=1.故答案为1.【点睛】本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.三、解答题(共78分)19、见解析【分析】由AD是△ABC的中线就可以得出BD=CD,再由平行线的性质得到∠FCD=∠EBD,∠DFC=∠DEB,推出△CDF≌△BDE,就可以得出BE=CF.【详解】∵AD是△ABC的中线,∴BD=CD,∵BE∥CF,∴∠FCD=∠EBD,∠DFC=∠DEB,在△CDF和△BDE中,,∴△CDF≌△BDE(AAS),∴BE=CF.【点睛】本题考查了全等三角形的判定及性质、平行线的性质等知识,解答时证明三角形全等是关键.20、(1)见解析;(2)点O在∠BAC的平分线上,理由见解析.【解析】(1)由OB=OC,得∠OBC=∠OCB.再证∠BEC=∠CDB=90°由(AAS)可证△BCE≌△CBD,则∠DBC=∠ECB,所以,含有60°的等腰三角形是等边三角形;(2)由(1△BCE≌△CBD,得,EB=CD.又OB=OC,所以OE=OD,再由角平分线性质定理可证得.【详解】(1)证明:∵OB=OC,∴∠OBC=∠OCB.∵BE⊥AC,CD⊥AB,∴∠BEC=∠CDB=90°.又∵BC=BC,∴△BCE≌△CBD(AAS),∴∠DBC=∠ECB,∴AB=AC.又∵∠A=60°,∴△ABC是等边三角形.(2)解:点O在∠BAC的平分线上.理由如下:连接AO.由(1)可知△BCE≌△CBD,∴EB=CD.∵OB=OC,∴OE=OD.又∵OE⊥AC,OD⊥AB,∴点O在∠BAC的平分线上.【点睛】本题考核知识点等边三角形判定,角平分线.解题关键点:证三角形全等得到对应边相等,从而得到等腰三角形,再证三角形是等边三角形;利用角平分线的性质定理推出必要条件.21、(1)∠F=30°;(2)DF=4,EF=2.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【详解】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4,∴EF=DE=2.【点睛】本题考查等边三角形的判定和性质,以及直角三角形的性质,解题的关键是熟记30度的角所对的直角边等于斜边的一半.22、(1)试销时该品种苹果的进货价是每千克5元;(2)商场在两次苹果销售中共盈利4160元.【详解】解:(1)设试销时该品种苹果的进货价是每千克x元解得x=5经检验:x=5是原方程的解,并满足题意答:试销时该品种苹果的进货价是每千克5元.(2)两次购进苹果总重为:千克共盈利:元答:共盈利4160元.23、(1)y=﹣1x+3;(1);(3)y=﹣1x,y=﹣1x+1【分析】(1)把A、B两点代入可求得k、b的值,可得到一次函数的表达式;(1)分别令y=0、x=0可求得直线与两坐标轴的两交点坐标,可求得所围成的三角形的面积;(3)根据上加下减,左加右减的法则可得到平移后的函数表达式.【详解】解:(1)∵一次函数y=kx+b的图象过A(1,1)和B(1,﹣1),∴,解得,∴一次函数为y=﹣1x+3;(1)在y=﹣1x+3中,分别令x=0、y=0,求得一次函数与两坐标轴的交点坐标分别为(0,3)、(,0),∴直线与两坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论