吉林省松原市高中2025年高考数学试题命题比赛模拟试卷(7)含解析_第1页
吉林省松原市高中2025年高考数学试题命题比赛模拟试卷(7)含解析_第2页
吉林省松原市高中2025年高考数学试题命题比赛模拟试卷(7)含解析_第3页
吉林省松原市高中2025年高考数学试题命题比赛模拟试卷(7)含解析_第4页
吉林省松原市高中2025年高考数学试题命题比赛模拟试卷(7)含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省松原市高中2025年高考数学试题命题比赛模拟试卷(7)请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知条件,条件直线与直线平行,则是的()A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件2.已知函数,若,则下列不等关系正确的是()A. B.C. D.3.设命题:,,则为A., B.,C., D.,4.在中,,,分别为角,,的对边,若的面为,且,则()A.1 B. C. D.5.若各项均为正数的等比数列满足,则公比()A.1 B.2 C.3 D.46.若函数的图象如图所示,则的解析式可能是()A. B. C. D.7.已知集合,,,则()A. B. C. D.8.已知等差数列中,,则()A.20 B.18 C.16 D.149.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有()A.36种 B.44种 C.48种 D.54种10.已知集合A={x|x<1},B={x|},则A. B.C. D.11.连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为()A. B. C. D.12.《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系xOy中,已知A0,a,B3,a+414.设定义域为的函数满足,则不等式的解集为__________.15.锐角中,角,,所对的边分别为,,,若,则的取值范围是______.16.等腰直角三角形内有一点P,,,,,则面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面是直角梯形,,,,是正三角形,,是的中点.(1)证明:;(2)求直线与平面所成角的正弦值.18.(12分)已知在等比数列中,.(1)求数列的通项公式;(2)若,求数列前项的和.19.(12分)已知函数u(x)=xlnx,v(x)x﹣1,m∈R.(1)令m=2,求函数h(x)的单调区间;(2)令f(x)=u(x)﹣v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1•x2的最大值.20.(12分)如图,在平面直角坐标系中,已知圆C:,椭圆E:()的右顶点A在圆C上,右准线与圆C相切.(1)求椭圆E的方程;(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当时,求直线l的方程.21.(12分)在中,设、、分别为角、、的对边,记的面积为,且.(1)求角的大小;(2)若,,求的值.22.(10分)在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系.已知点的直角坐标为,过的直线与曲线相交于,两点.(1)若的斜率为2,求的极坐标方程和曲线的普通方程;(2)求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

先根据直线与直线平行确定的值,进而即可确定结果.【详解】因为直线与直线平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要条件.故选C本题主要考查充分条件和必要条件的判定,熟记概念即可,属于基础题型.2.B【解析】

利用函数的单调性得到的大小关系,再利用不等式的性质,即可得答案.【详解】∵在R上单调递增,且,∴.∵的符号无法判断,故与,与的大小不确定,对A,当时,,故A错误;对C,当时,,故C错误;对D,当时,,故D错误;对B,对,则,故B正确.故选:B.本题考查分段函数的单调性、不等式性质的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.3.D【解析】

直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题:,,则为:,.故本题答案为D.本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.4.D【解析】

根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可.【详解】解:由,得,∵,∴,即即,则,∵,∴,∴,即,则,故选D.本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.5.C【解析】

由正项等比数列满足,即,又,即,运算即可得解.【详解】解:因为,所以,又,所以,又,解得.故选:C.本题考查了等比数列基本量的求法,属基础题.6.A【解析】

由函数性质,结合特殊值验证,通过排除法求得结果.【详解】对于选项B,为奇函数可判断B错误;对于选项C,当时,,可判断C错误;对于选项D,,可知函数在第一象限的图象无增区间,故D错误;故选:A.本题考查已知函数的图象判断解析式问题,通过函数性质及特殊值利用排除法是解决本题的关键,难度一般.7.A【解析】

求得集合中函数的值域,由此求得,进而求得.【详解】由,得,所以,所以.故选:A本小题主要考查函数值域的求法,考查集合补集、交集的概念和运算,属于基础题.8.A【解析】

设等差数列的公差为,再利用基本量法与题中给的条件列式求解首项与公差,进而求得即可.【详解】设等差数列的公差为.由得,解得.所以.故选:A本题主要考查了等差数列的基本量求解,属于基础题.9.B【解析】

分三种情况,任务A排在第一位时,E排在第二位;任务A排在第二位时,E排在第三位;任务A排在第三位时,E排在第四位,结合任务B和C不能相邻,分别求出三种情况的排列方法,即可得到答案.【详解】六项不同的任务分别为A、B、C、D、E、F,如果任务A排在第一位时,E排在第二位,剩下四个位置,先排好D、F,再在D、F之间的3个空位中插入B、C,此时共有排列方法:;如果任务A排在第二位时,E排在第三位,则B,C可能分别在A、E的两侧,排列方法有,可能都在A、E的右侧,排列方法有;如果任务A排在第三位时,E排在第四位,则B,C分别在A、E的两侧;所以不同的执行方案共有种.本题考查了排列组合问题,考查了学生的逻辑推理能力,属于中档题.10.A【解析】∵集合∴∵集合∴,故选A11.D【解析】

先求出四个顶点、四个焦点的坐标,四个顶点构成一个菱形,求出菱形的面积,四个焦点构成正方形,求出其面积,利用重要不等式求得取得最大值时有,从而求得其离心率.【详解】双曲线与互为共轭双曲线,四个顶点的坐标为,四个焦点的坐标为,四个顶点形成的四边形的面积,四个焦点连线形成的四边形的面积,所以,当取得最大值时有,,离心率,故选:D.该题考查的是有关双曲线的离心率的问题,涉及到的知识点有共轭双曲线的顶点,焦点,菱形面积公式,重要不等式求最值,等轴双曲线的离心率,属于简单题目.12.B【解析】

由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的,两面积作差即可求解.【详解】由图,正八边形分割成个等腰三角形,顶角为,设三角形的腰为,由正弦定理可得,解得,所以三角形的面积为:,所以每块八卦田的面积约为:.故选:B本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.(-53,【解析】

求出AB的长度,直线方程,结合△ABC的面积为5,转化为圆心到直线的距离进行求解即可.【详解】解:AB的斜率k=a+4-a3-0=4=3设△ABC的高为h,则∵△ABC的面积为5,∴S=12|AB|h=即h=2,直线AB的方程为y﹣a=43x,即4x﹣3y+3若圆x2+y2=9上有且仅有四个不同的点C,则圆心O到直线4x﹣3y+3a=0的距离d=|3a|则应该满足d<R﹣h=3﹣2=1,即|3a|5得|3a|<5得-53<故答案为:(-53,本题主要考查直线与圆的位置关系的应用,求出直线方程和AB的长度,转化为圆心到直线的距离是解决本题的关键.14.【解析】

根据条件构造函数F(x),求函数的导数,利用函数的单调性即可得到结论.【详解】设F(x),则F′(x),∵,∴F′(x)>0,即函数F(x)在定义域上单调递增.∵∴,即F(x)<F(2x)∴,即x>1∴不等式的解为故答案为:本题主要考查函数单调性的判断和应用,根据条件构造函数是解决本题的关键.15.【解析】

由余弦定理,正弦定理得出,从而得出,推出的范围,由余弦函数的性质得出的范围,再利用二倍角公式化简,即可得出答案.【详解】由题意得由正弦定理得化简得又为锐角三角形,则,,.故答案为本题主要考查了正弦定理和余弦定理的应用,属于中档题.16.【解析】

利用余弦定理计算,然后根据平方关系以及三角形面积公式,可得结果.【详解】设由题可知:由,,,所以化简可得:则或,即或由,所以所以故答案为:本题主要考查余弦定理解三角形,仔细观察,细心计算,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见证明;(2)【解析】

(1)设是的中点,连接、,先证明是平行四边形,再证明平面,即(2)以为坐标原点,的方向为轴的正方向,建空间直角坐标系,分别计算各个点坐标,计算平面法向量,利用向量的夹角公式得到直线与平面所成角的正弦值.【详解】(1)证明:设是的中点,连接、,是的中点,,,,,,,是平行四边形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,过点作,垂足为,平面,以为坐标原点,的方向为轴的正方向,建立如图的空间直角坐标系,则,,,,设是平面的一个法向量,则,,令,则,,,直线与平面所成角的正弦值为.本题考查了线面垂直,线线垂直,利用空间直角坐标系解决线面夹角问题,意在考查学生的空间想象能力和计算能力.18.(1)(2)【解析】

(1)由基本量法,求出公比后可得通项公式;(2)求出,用裂项相消法求和.【详解】解:(1)设等比数列的公比为又因为,所以解得(舍)或所以,即(2)据(1)求解知,,所以所以本题考查求等比数列的通项公式,考查裂项相消法求和.解题方法是基本量法.基本量法是解决等差数列和等比数列的基本方法,务必掌握.19.(1)单调递增区间是(0,e),单调递减区间是(e,+∞)(2)【解析】

(1)化简函数h(x),求导,根据导数和函数的单调性的关系即可求出(2)函数f(x)恰有两个极值点x1,x2,则f′(x)=lnx﹣mx=0有两个正根,由此得到m(x2﹣x1)=lnx2﹣lnx1,m(x2+x1)=lnx2+lnx1,消参数m化简整理可得ln(x1x2)=ln•,设t,构造函数g(t)=()lnt,利用导数判断函数的单调性,求出函数的最大值即可求出x1•x2的最大值.【详解】(1)令m=2,函数h(x),∴h′(x),令h′(x)=0,解得x=e,∴当x∈(0,e)时,h′(x)>0,当x∈(e,+∞)时,h′(x)<0,∴函数h(x)单调递增区间是(0,e),单调递减区间是(e,+∞)(2)f(x)=u(x)﹣v(x)=xlnxx+1,∴f′(x)=1+lnx﹣mx﹣1=lnx﹣mx,∵函数f(x)恰有两个极值点x1,x2,∴f′(x)=lnx﹣mx=0有两个不等正根,∴lnx1﹣mx1=0,lnx2﹣mx2=0,两式相减可得lnx2﹣lnx1=m(x2﹣x1),两式相加可得m(x2+x1)=lnx2+lnx1,∴∴ln(x1x2)=ln•,设t,∵1e,∴1<t≤e,设g(t)=()lnt,∴g′(t),令φ(t)=t2﹣1﹣2tlnt,∴φ′(t)=2t﹣2(1+lnt)=2(t﹣1﹣lnt),再令p(t)=t﹣1﹣lnt,∴p′(t)=10恒成立,∴p(t)在(1,e]单调递增,∴φ′(t)=p(t)>p(1)=1﹣1﹣ln1=0,∴φ(t)在(1,e]单调递增,∴g′(t)=φ(t)>φ(1)=1﹣1﹣2ln1=0,∴g(t)在(1,e]单调递增,∴g(t)max=g(e),∴ln(x1x2),∴x1x2故x1•x2的最大值为.本题考查了利用导数求函数的最值和最值,考查了函数与方程的思想,转化与化归思想,属于难题20.(1)(2)或.【解析】

(1)圆的方程已知,根据条件列出方程组,解方程即得;(2)设,,显然直线l的斜率存在,方法一:设直线l的方程为:,将直线方程和椭圆方程联立,消去,可得,同理直线方程和圆方程联立,可得,再由可解得,即得;方法二:设直线l的方程为:,与椭圆方程联立,可得,将其与圆方程联立,可得,由可解得,即得.【详解】(1)记椭圆E的焦距为().右顶点在圆C上,右准线与圆C:相切.解得,,椭圆方程为:.(2)法1:设,,显然直线l的斜率存在,设直线l的方程为:.直线方程和椭圆方程联立,由方程组消去y得,整理得.由,解得.直线方程和圆方程联立,由方程组消去y得,由,解得.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论