广东省湛江地区六校联考2024届中考冲刺卷数学试题含解析_第1页
广东省湛江地区六校联考2024届中考冲刺卷数学试题含解析_第2页
广东省湛江地区六校联考2024届中考冲刺卷数学试题含解析_第3页
广东省湛江地区六校联考2024届中考冲刺卷数学试题含解析_第4页
广东省湛江地区六校联考2024届中考冲刺卷数学试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省湛江地区六校联考2024届中考冲刺卷数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,直线y=34x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=3A.17 B.16 C.12.在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是(

)A.5 B.7 C.9 D.113.一次函数与二次函数在同一平面直角坐标系中的图像可能是()A. B. C. D.4.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.5.下列图形不是正方体展开图的是()A. B.C. D.6.如图,在△ABC中,AB=5,AC=4,∠A=60°,若边AC的垂直平分线DE交AB于点D,连接CD,则△BDC的周长为()A.8 B.9 C.5+ D.5+7.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.8.如图是某几何体的三视图,下列判断正确的是()A.几何体是圆柱体,高为2 B.几何体是圆锥体,高为2C.几何体是圆柱体,半径为2 D.几何体是圆锥体,直径为29.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A.平均数 B.标准差 C.中位数 D.众数10.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为()A. B.C. D.11.tan30°的值为()A.12 B.32 C.312.-4的绝对值是()A.4 B. C.-4 D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知一组数据,,,,的平均数是,那么这组数据的方差等于________.14.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是_____.15.若关于x的方程的解是正数,则m的取值范围是____________________16.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=__________°.17.如果等腰三角形的两内角度数相差45°,那么它的顶角度数为_____.18.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了两幅统计图:(1)样本中的总人数为人;扇形统计十图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?20.(6分)如图,有长为14m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm1.求S与x的函数关系式及x值的取值范围;要围成面积为45m1的花圃,AB的长是多少米?当AB的长是多少米时,围成的花圃的面积最大?21.(6分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.22.(8分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长(≈1.73).23.(8分)观察下列等式:第1个等式:a1=-1,第2个等式:a2=,第3个等式:a3==2-,第4个等式:a4=-2,…按上述规律,回答以下问题:请写出第n个等式:an=__________.a1+a2+a3+…+an=_________.24.(10分)解不等式组请结合题意填空,完成本题的解答.(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为.25.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B求证:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的长.26.(12分)某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:(1)求购进的第一批文化衫的件数;(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?27.(12分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题:(1)请用t分别表示A、B的路程sA、sB;(2)在A出发后几小时,两人相距15km?

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】

过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,34x+3),得出DN=34x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=OCON,求出ON,在Rt△NDO中,由勾股定理得出(34x+3)2+(-x)2=(122【详解】过O作OC⊥AB于C,过N作ND⊥OA于D,∵N在直线y=34∴设N的坐标是(x,34则DN=34y=34当x=0时,y=3,当y=0时,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,∴3×4=5OC,OC=125∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=OCON∴ON=122在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(34x+3)2+(-x)2=(1225解得:x1=-8425,x2=12∵N在第二象限,∴x只能是-842534x+3=12即ND=1225,OD=84tan∠AON=NDOD故选A.【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强.2、B【解析】试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=1.故选B.3、D【解析】

本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选D.【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.4、D【解析】

根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.5、B【解析】

由平面图形的折叠及正方体的展开图解题.【详解】A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体.故选B.【点睛】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.6、C【解析】

过点C作CM⊥AB,垂足为M,根据勾股定理求出BC的长,再根据DE是线段AC的垂直平分线可得△ADC等边三角形,则CD=AD=AC=4,代入数值计算即可.【详解】过点C作CM⊥AB,垂足为M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是线段AC的垂直平分线,∴AD=DC,∵∠A=60°,∴△ADC等边三角形,∴CD=AD=AC=4,∴△BDC的周长=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案选C.【点睛】本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运算.7、B【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【详解】分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=12∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=12AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=12∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确,故选B.【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD的面积的表达式是解题的关键.8、A【解析】试题解析:根据主视图和左视图为矩形是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱,再根据左视图的高度得出圆柱体的高为2;故选A.考点:由三视图判断几何体.9、B【解析】试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:设样本A中的数据为xi,则样本B中的数据为yi=xi+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.故选B.考点:统计量的选择.10、B【解析】

设大马有匹,小马有匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.【详解】解:设大马有匹,小马有匹,由题意得:,故选:B.【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.11、D【解析】

直接利用特殊角的三角函数值求解即可.【详解】tan30°=33,故选:D【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.12、A【解析】

根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、5.2【解析】分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案.详解:∵平均数为6,∴(3+4+6+x+9)÷5=6,解得:x=8,∴方差为:.点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.14、1.【解析】试题解析:连接OE,如下图所示,则:OE=OA=R,∵AB是⊙O的直径,弦EF⊥AB,∴ED=DF=4,∵OD=OA-AD,∴OD=R-2,在Rt△ODE中,由勾股定理可得:OE2=OD2+ED2,∴R2=(R-2)2+42,∴R=1.考点:1.垂径定理;2.解直角三角形.15、m<4且m≠2【解析】解方程得x=4-m,由已知可得x>0且x-2≠0,则有4-m>0且4-m-2≠0,解得:m<4且m≠2.16、1【解析】试题分析:由三角形的外角的性质可知,∠1=90°+30°=1°,故答案为1.考点:三角形的外角性质;三角形内角和定理.17、90°或30°.【解析】

分两种情况讨论求解:顶角比底角大45°;顶角比底角小45°.【详解】设顶角为x度,则当底角为x°﹣45°时,2(x°﹣45°)+x°=180°,解得x=90°,当底角为x°+45°时,2(x°+45°)+x°=180°,解得x=30°,∴顶角度数为90°或30°.故答案为:90°或30°.【点睛】本题考查了等腰三角形的两个底角相等即分类讨论的数学思想,解答本题的关键是分顶角比底角大45°或顶角比底角小45°两种情况进行计算.18、120°【解析】

设扇形的半径为r,圆心角为n°.利用扇形面积公式求出r,再利用弧长公式求出圆心角即可.【详解】设扇形的半径为r,圆心角为n°.由题意:,∴r=4,∴∴n=120,故答案为120°【点睛】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)80、72;(2)16人;(3)50人【解析】

(1)用步行人数除以其所占的百分比即可得到样本总人数:810%=80(人);用总人数乘以开私家车的所占百分比即可求出m,即m=8025%=20;用3600乘以骑自行车所占的百分比即可求出其所在扇形的圆心角:360(1-10%-25%-45%)=.(2)根据扇形统计图算出骑自行车的所占百分比,再用总人数乘以该百分比即可求出骑自行车的人数,补全条形图即可.(3)依题意设原来开私家车的人中有x人改为骑自行车,用x分别表示改变出行方式后的骑自行车和开私家车的人数,根据题意列出一元一次不等式,解不等式即可.【详解】解:(1)样本中的总人数为8÷10%=80人,∵骑自行车的百分比为1﹣(10%+25%+45%)=20%,∴扇形统计十图中“骑自行车”所在扇形的圆心角为360°×20%=72°(2)骑自行车的人数为80×20%=16人,补全图形如下:(3)设原来开私家车的人中有x人改骑自行车,由题意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,解得:x≥50,∴原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.【点睛】本题主要考查统计图表和一元一次不等式的应用。20、(1)S=﹣3x1+14x,≤x<8;(1)5m;(3)46.67m1【解析】

(1)设花圃宽AB为xm,则长为(14-3x),利用长方形的面积公式,可求出S与x关系式,根据墙的最大长度求出x的取值范围;(1)根据(1)所求的关系式把S=2代入即可求出x,即AB;(3)根据二次函数的性质及x的取值范围求出即可.【详解】解:(1)根据题意,得S=x(14﹣3x),即所求的函数解析式为:S=﹣3x1+14x,又∵0<14﹣3x≤10,∴;(1)根据题意,设花圃宽AB为xm,则长为(14-3x),∴﹣3x1+14x=2.整理,得x1﹣8x+15=0,解得x=3或5,当x=3时,长=14﹣9=15>10不成立,当x=5时,长=14﹣15=9<10成立,∴AB长为5m;(3)S=14x﹣3x1=﹣3(x﹣4)1+48∵墙的最大可用长度为10m,0≤14﹣3x≤10,∴,∵对称轴x=4,开口向下,∴当x=m,有最大面积的花圃.【点睛】二次函数在实际生活中的应用是本题的考点,根据题目给出的条件,找出合适的等量关系,列出方程是解题的关键.21、(1),点D的坐标为(2,-8)(2)点F的坐标为(7,)或(5,)(3)菱形对角线MN的长为或.【解析】分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,∠FAB=∠EDB,tan∠FAG=tan∠BDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.详解:(1)∵OB=OC=1,∴B(1,0),C(0,-1).∴,解得,∴抛物线的解析式为.∵=,∴点D的坐标为(2,-8).(2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FG⊥x轴于点G,易求得OA=2,则AG=x+2,FG=.∵∠FAB=∠EDB,∴tan∠FAG=tan∠BDE,即,解得,(舍去).当x=7时,y=,∴点F的坐标为(7,).当点F在x轴下方时,设同理求得点F的坐标为(5,).综上所述,点F的坐标为(7,)或(5,).(3)∵点P在x轴上,∴根据菱形的对称性可知点P的坐标为(2,0).如图,当MN在x轴上方时,设T为菱形对角线的交点.∵PQ=MN,∴MT=2PT.设TP=n,则MT=2n.∴M(2+2n,n).∵点M在抛物线上,∴,即.解得,(舍去).∴MN=2MT=4n=.当MN在x轴下方时,设TP=n,得M(2+2n,-n).∵点M在抛物线上,∴,即.解得,(舍去).∴MN=2MT=4n=.综上所述,菱形对角线MN的长为或.点睛:1.求二次函数的解析式(1)已知二次函数过三个点,利用一般式,y=ax2+bx+c().列方程组求二次函数解析式.(2)已知二次函数与x轴的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.22、简答:∵OA,OB=OC=1500,∴AB=(m).答:隧道AB的长约为635m.【解析】试题分析:首先过点C作CO⊥AB,根据Rt△AOC求出OA的长度,根据Rt△CBO求出OB的长度,然后进行计算.试题解析:如图,过点C作CO⊥直线AB,垂足为O,则CO="1500m"∵BC∥OB∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°∴在Rt△CAO中,OA=1500tan60∘=1500×3在Rt△CBO中,OB=1500×tan45°=1500m∴AB=1500-5003≈1500-865=635(m)答:隧道AB的长约为635m.考点:锐角三角函数的应用.23、(1)=;(2).【解析】

(1)根据题意可知,,,,,…由此得出第n个等式:an=;(2)将每一个等式化简即可求得答案.【详解】解:(1)∵第1个等式:,第2个等式:,第3个等式:,第4个等式:,∴第n个等式:an=;(2)a1+a2+a3+…+an=(=.故答案为;.【点睛】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.24、(1)x≥;(1)x≤1;(3)答案见解析;(4)≤x≤1.【解析】

分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(I)解不等式(1),得x≥;(II)解不等式(1),得x≤1;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为:≤x≤1.故答案为x≥、x≤1、≤x≤1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25、(1)见解析(2)6【解析】

(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC.(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论