数学系毕业论文开题报告_第1页
数学系毕业论文开题报告_第2页
数学系毕业论文开题报告_第3页
数学系毕业论文开题报告_第4页
数学系毕业论文开题报告_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学系毕业论文开题报告篇一

一、选题的依据及课题的意义

1、选题的依据:

数学在现在科学发展中起着很重要的作用,矩阵是数学的一个分支,通过本专业开的《高等代数》这门课程的学习,对矩阵有了一定的了解。在课余时间对矩阵理论与矩阵分析等相关书籍的阅读,了解到矩阵对于分析问题解决问题有很大的帮助。矩阵理论也在很多领域里有所应用,可以说矩阵对于现代科学具有不可替代的作用。为此我们需要深入了解矩阵的一些性质及其关系。矩阵的等价、相似、合同是矩阵很重要的性质,这些性质对于解决问题有很大的帮助。

2、课题的意义:

通过对矩阵等价、相似、合同的探讨加深对矩阵的了解。也通过本次研究更深入的理解并运用矩阵理论的性质特别是矩阵的等价、相似、合同这三大性质来解决社会活动的所会遇到的问题。通过对矩阵等价、相似、合同这三大关系的探讨,能够了解它们的标准形的应用有助于提高学生利用矩阵等价、相似、合同这三大关系来分析问题和解决问题的能力。

二、研究动态及创新点

1、研究动态:

目前已经有许多国内外的知名学者对矩阵进行研究,矩阵理论对于问题的解决有着很重要的作用。就我阅读一些参考文献:《矩阵分析与应用》张贤达著、《矩阵理论及其应用》将正新,施国梁著、《矩阵论》戴华著等了解到现在已经有很多学者对矩阵有了一定的研究。这些文献对矩阵的一些理论及其性质都做了较深入的阐述,对于矩阵的等价、相似、合同一些相关的理论证明和应用都有了相关说明。

2、创新点:

通过对矩阵论及矩阵分析的学习,熟练掌握矩阵的等价、相似、合同的相关性质和判别。并且对这三者的区别与联系做了相关阐述。同时通过对矩阵的这些理论研究,总结了矩阵在等价变换,合同变换,相似变换下的标准形及其在矩阵的分解,矩阵的秩和矩阵的特征值等方面的应用。同时还运用对矩阵的等价、相似、合同的性质对一些相关问题的简化及解决。

三、研究内容及实验方案

研究内容:

1、矩阵的概念及其一般特性。

2、矩阵等价、相似、合同三大关系的性质、判别。

3、矩阵等价、相似、合同三大关系的区别与联系。

4、矩阵在等价变换,合同变换,相似变换下的标准形及其在矩阵的分解,矩阵的秩和矩阵的特征值等方面的应用。

5、通过运用相关理论研究解决一些简单问题的例子。

实验方案:

1、通过图书馆查找阅读相关文献并运用所学知识对其进行分析和总结。

2、通过网上查找相关信息并对其分析总结。

3、与老师和同学一同探讨矩阵的运用。

四、毕业论文工作进度

1、论文开题和选题20XX.1.15—20XX.2.1

2、阅读参考文献20XX.3.12—20XX.3.18

3、撰写毕业论文开题报告20XX.3.19—20XX.3.25

4、撰写毕业论文初稿20XX.3.26—20XX.4.29

5、毕业论文中期检查20XX.4.30—20XX.5.6

6、完成毕业论文20XX.5.7—20XX.5.20

7、准备毕业论文答辩20XX.5.21—20XX.5.27

8、毕业论文答辩20XX年六月中旬

五、主要参考文献

[1]高等代数(第二版)[M].北京大学数学系几何与代数教研室代数小组.高等教育出版社.2003.

[2]矩阵论[M].方保镕,周继东,李医民.清华大学出版社.2004.

[3]线性代数[M].刘先忠,杨明.高等教育出版社.2003.

[4]矩阵分析与应用[M].张贤达.清华大学出版社.2004.

[5]矩阵论[M].张凯院,徐仲.西北工业大学出版社.2007.

[6]AdvancedLinearAlgebra[M].StevenRoman.世界图书出版社.2008.

[7]矩阵分解的应用[J].王岩,王爱青.青岛建筑工程学院学报.2005(2).

[8]关于矩阵的分解形式[J].屈立新.邵学院学报(自然科学版).2005(3).

[9]正交矩阵的正交分解[J].曲茹,王淑华.高师理科学刊.2001(2).

篇二

选题依据及研究意义

函数项级数的一致收敛性的判定是数学分析中的一个重要知识点,函数项级数既可以被看作是对数项级数的推广,同时数项级数也可以看作是函数项级数的一个特例。它们在研究内容上有许多相似之处,如研究其收敛性及和等问题,并且它们很多问题都是借助数列和函数极限来解决,同时它们敛散性的判别方法也具有相似之处,如Cauchy判别法,阿贝尔判别法,狄利克雷判别法等。教材中给出了对于()nux一致收敛性的判别法,如Cauchy判别法,阿贝尔判别法,狄利克雷判别法等,但在具体进行一致收敛的判别时,往往会有一定的困难,这就需要我们有效地运用函数项级数一致收敛的判别法。而次课题除了叙述以上判别法外,还对这些判别方法进行了一些推广,从而进一步丰富了判别函数项级数一致收敛的方法。

选题研究现状

目前通用的数学分析教材(如华东师范大学,复旦大学,吉林大学,北京师范大学等)其介绍的主要内容如下:M判别法,狄利克雷判别法,阿贝尔判别法,柯西收敛准则等,用来判别一些级数的一致收敛性问题,其他一些数学方面的工作者对某些特殊级数的收敛性进行了讨论。当前对级数的收敛性的讨论研究已经到达比较高级阶段,分枝也比较细,发展也相对较完善。但在许多实际解题过程中,往往不是特定的级数,用特殊的方法不能解决。故需对特殊级数情况要总结和发展。

研究内容(包括基本思路、框架、主要研究方式、方法等)

基本思路:首先从定义出发,让读者了解函数项级数及一致收敛的定义,对函数项级数一致收敛有一个大致的认识,并对其进行一定的说明,且将收敛与一致收敛做一个比较,使读者对其有一个更深刻的认识。随后给出一些常见的一致收敛的判别法,并附上例题加以说明。当熟悉了一般的判别法后,我将其加以推广,得到一些特殊的判别法,如比式判别法,根式判别法,对数判别法等。框架:主要由论文题目“函数项级数一致收敛的判别”、摘要、关键词、引言、函数项级数及一致收敛的定义、函数项级数一致收敛的一般判别法及推广、小结、参考文献等组成。

主要研究的方式、方法:首先介绍函数项级数及一致收敛的定义,然后给出一些常见的判别法,并用一系列的例题加以说明,在将判别法加以推广。

研究内容:

第一部分简单介绍函数项级数及一致收敛的定义,

第二部分主要介绍函数项级数一致收敛的一般判别方法,如柯西一致收敛准则、余项判别法、魏尔斯特拉斯判别法、狄利克雷判别法、阿贝尔判别法等,再进行推广。

第三部分是总结其研究的必要性。

论文提纲(含论文选题、论文主体框架)

论文题目:函数项级数一致收敛的判别论文主体框架:

1、引言

2、定义

函数项级数定义

函数项级数一致收敛的定义

3、函数项级数一致收敛的判别方法柯西一致收敛准则余项判别法

魏尔斯特拉斯判别法狄利克雷判别法阿贝尔判别法

4、函数项级数一致收敛判别方法的推广比式判别法根式判别法对数判别法积分判别法确界判别法

5、结束语

阐明总结函数项级数一致收敛判别方法的重要性及必要性。

主要参阅文献

[1]华东师范大学数学系.数学分析(下册)[M].高等教育出版社.1991

[2]王振乾,彭建奎,王立萍.关于函数项级数一致收敛性判定的讨论[J].甘肃联合大学学报.2010

[3]吴良森,毛羽辉,宋国栋,魏栍等.数学分析习题精解[M].北京:理科教育出版社,2002.

[4]谢惠民,恽自求,易发槐,钱定边等.数学分析习题课讲义[M].北京:高等教育出版社,2004.1:

[5]赵显曾,黄安才等.数学分析的方法与解题[M].陕西:师范大学出版社,2005.8

[6]刘玉璉,傅沛仁,林玎,苑德馨,刘宁等.数学分析讲义[M].北京:高等教育出版社,2003.6

[7]裴礼文.数学分析中的典型问题与方法[M].北京:高

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论