maximum-flow-acceleration-by-traversing-tree-based-two-boundary-graph-contraction原版完整文件_第1页
maximum-flow-acceleration-by-traversing-tree-based-two-boundary-graph-contraction原版完整文件_第2页
maximum-flow-acceleration-by-traversing-tree-based-two-boundary-graph-contraction原版完整文件_第3页
maximum-flow-acceleration-by-traversing-tree-based-two-boundary-graph-contraction原版完整文件_第4页
maximum-flow-acceleration-by-traversing-tree-based-two-boundary-graph-contraction原版完整文件_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Contentslistsavailableat

ScienceDirect

ExpertSystemsWithApplications

journalhomepage:

/locate/eswa

ExpertSystemsWithApplications225(2023)120151

Maximumflowaccelerationbytraversingtreebasedtwo-boundarygraph contraction

WeiWei

a

,

b

,PengpengWang

a

,

b

,YaboDong

c

,

aKeyLaboratoryofGrainInformationProcessingandControl(HenanUniversityofTechnology),MinistryofEducation,Zhengzhou450001,China

bHenanProvincialKeyLaboratoryofGrainPhotoelectricDetectionandControl,HenanUniversityofTechnology,Zhengzhou450001,China

cCollegeofcomputerscienceandtechnology,ZhejiangUniversity,Hangzhou310027,China

ARTICLEINFO ABSTRACT

Keywords:

Tree-cutmappingBoundarynodeMaximumflowGraphcontractionOverlay

Themaximumflow(max-flow)problemissofundamentalthatthecorrespondingalgorithmshavemanyapplicationsinmanyscenarios.Acommonaccelerationstrategyistoreducegraphsizebycontractingsubgraphs,buttherearefewcandidatesubgraphswithnosizelimitthatcanguaranteeexactmax-flowsolutionsaftercontraction.Weaddanewsubgraphcontractionconditiontotheexistingconditionswithcorrespondingefficientlocatingalgorithm,andweproposeamax-flowaccelerationalgorithmusingtraversingtree-basedcontraction(TTCMax).TTCMaxcanworkefficientlyonlybyusingconnectivityinformation.Throughdepth-firsttraversing,itcancontracttwo-boundarygraphsofanysizeintoedges,andthenaccelerateexistingmax-flowalgorithmsusingcontractedgraphs.Large-scalerandomandreal-worldgraphexperimentstestitseffectandtheaccelerationratiocanbemorethan50timeswithlowgraphreductionoverhead,indicatingthattheproposedalgorithmcanbeusedasaneffectivecomplementtoexistingalgorithms.

Introduction

Asafundamentalandwidelyinvestigatedproblem,themaximumflow(max-flow)problemanditsdualproblem,theminimumcut(min-cut)problemhavemanyapplicationsandareoftenusedassubroutinesinotheralgorithms(

Sherman

,

2009

).Manyadvanceshavebeenmade

in

thedevelopmentofefficientalgorithmsforthisproblem(

Goldberg

&Rao

,

1998

).Fastsolutionscanbefoundthroughalgorithm-orientedacceleration(

Boykov&Kolmogorov

,

2004

;

Goldberg&Tarjan

,

2014

;

Verma&Dhruv

,

2012

),orgraphdata-orientedacceleration(

Gusfield

,

1990

;

Wei,Liu,&Zhang

,

2018

;

Zhang,Hua,Jiang,Zhang,&Chen

,

2011

;

Zhang,Xu,Hua,&Zhao

,

2012

;

Zhao,Su,Liu,&Zhang

,

2014

;

Zhao,Xu,Hua,&Zhang

,

2012

).Asfordata-orientedalgorithms,thecoreideaistoreducethesizeoftheinput,suchasreducingthesizeofthegraphbycontractingsubgraphstonodes.Therearemanycontraction-basedalgorithmsthatexploitvarioussubgraphcontractionconditions.Unfortunately,mostofthesealgorithmscanonlyobtainapproximatedvaluewhenusingsubgraphcontractionconditionwithnosizelimit.

Inthepaper,weproposealosslessalgorithmthatemploysasub-graphcontractionconditionwithnosizelimit,andatoyexampleisgivenin

Fig.

1

toclarifythedifferencebetweentheproposedmethodandexistingcontraction-basedmethods.Unlikeexistingnode-orientedcontractions,theproposedalgorithmcontractssubgraphsintoedges.

Thecorepartisaroutinethatcanefficientlysearchforthetwo-boundarygraph(TBG),thatis,thesubgraphcontainingtwoboundarynodesthatseparateitfromotherpartsofthewholegraph.Experimentsvalidateitseffectivenessbyusinglarge-scalegraphscontainingupto107nodes.

Theworkadvancesthestateoftheartbyintroducinganewlosslessandgeneralsize-freecontractionconditionwithahighlyefficientwaytolocatethecorrespondingsubgraphs.Specifically,thetheoreticalcon-tributionsinclude:(a)Weprovethatthecontractionoftwo-boundarygraphscanmaintaintheexactmax-flowresult,whichleadstothecontractionalgorithmthathasfewconstraints(e.g.,unlimitedsubgraphsize)andcanensureaccuratesolution.Theseconditionshavehardlybeenmetsimultaneouslybefore.(b)Tofindthetwo-boundarygraph,weproposetousethemappingbetweenthedepth-firsttraversaltreeandthenodecutset(NCS).ThemethodcanefficientlysearchfortheNCScontainingonlytwonodes(i.e.,twonodesoftheboundedgraph).

(c)WeproposethestrategyofselectingallreusableTBGsforagivennodepair.

Inaddition,thepracticalcontributionsare:(a)Toensurealgorithmgenerality,weproposetoidentifythebi-connectedcomponent(BCC)firstandthenTBGineachBCC,toensurealgorithmgenerality.SinceTBGpartiallyoverlapswithsomeexistingandinefficientsubgraph

∗Correspondingauthor.

E-mailaddresses:

weiwei_ise@

(W.Wei),

wangpengpeng_do@

(P.Wang),

dongyb@

(Y.Dong).

/10.1016/j.eswa.2023.120151

Received10June2022;Receivedinrevisedform11March2023;Accepted12April2023

Availableonline20April2023

0957-4174/©2023ElsevierLtd.Allrightsreserved.

W.Weietal.

ExpertSystemsWithApplications225(2023)120151

2

Fig.1.ExamplesshowingthedifferencebetweenTTCMaxandexistingcontractionalgorithms(usedinSection

1

).

contractionconditions,itcannotbeapplieddirectly.(b)Toensurealgo-rithmefficiencyandavoidthehighcomplexityofenumeratingTBGs,weintroducealowcomplexityrandomsearchalgorithm,whichcanhelpfindenoughTBGsforaccelerationatasmallcost.Experimentalresultsshowthatthealgorithmcanaccelerateexistingalgorithmsingeneratedgraphfamiliesandreal-worldgraphs,whiletheaccelerationratiocanbeuptotwoordersofmagnitude,andthuscanbeusedasaneffectivecomplementtoexistingalgorithms.

Literaturereview

Classicaccelerationattemptsmainlyfocusedonalgorithmtuning.Existingalgorithmsevolveintwodirections:theaugmentingpath-basedalgorithms(

Jack&Richard

,

1972

)andpreflow-basedalgo-rithms(

Goldberg&Tarjan

,

1988

).Theaugmentingpath-basedalgo-rithmsfocusonhowtofindasuitablepathbetweensourceandsinknodesineachiterationofmax-flowcomputation,sothatthewholecomputationcanbeefficientlyaccelerated.

JackandRichard

(

1972

)

W.Weietal.

ExpertSystemsWithApplications225(2023)120151

providedselectionrulesthatcanhelpavoidimproperselectionofaugmentingpathsleadingtoseverecomputationaldifficulties.Anewalgorithmusingtheshortestaugmentingpathwasproposed.

Karzanov

(

1974

)explicitlyintroducedtheblockingflowmethod,whichaug-mentedalongamaximumsetofshortestpathsbyfindingablockingflow.Suchaugmentationincreasedtheshortestaugmentingpathlengthandthusacceleratedtheshortestaugmentingpathmethod.Unlikeaug-mentingpath-basedmethods,push-relabel-basedmethodsmaintainedapreflowanditerativelyappliedpushoperationstoupdatethepreflow,

and

usedrelabeloperationstoupdatenodedistances(

Goldberg&

Tarjan

,

1988

).Here,apreflowisdifferentfromaflowinthatthetotalamountflowingintoanodecantemporarilyexceedthetotalamountflowingout,andtheproposedalgorithmpushesthelocalflowexcesstowardsthesinkalongtheestimatedshortestpath.

Inadditiontotuningalgorithmsthatkeepexactmax-flowvalues,

there

isalsoresearchintotradingaccuracyforspeed.

Christiano,Kel-

ner,Madry,Spielman,andTeng

(

2011

)proposedanewapproximationalgorithmforthemax-flowproblem.Bysolvingalistofelectricalflowproblemswiththesolutionofalinearequationsystem,thealgorithmcanbefasterthantheprevious𝑂(𝑁3∕2)algorithms.

Sherman

(

2013

)proposedanewalgorithmusing𝛼-congestion-approximators.Theal-gorithmmaintainedanarbitraryflowthatmayhavesomeresidualexcessanddeficits,andittookstepstominimizeapotentialfunctionmeasuringthecongestionofthecurrentflowplusanover-estimate

of

thecongestionrequiredtoroutetheresidualdemand.

Jonathan,

YinTat,Lorenzo,andAaron

(

2014

)introducedanewframeworkforapproximatelysolvingflowproblemsandappliedittoprovideasymptoticallyfasteralgorithmsformax-flowandmaximumconcur-rentmulti-commodityflowproblems.Thetechniquestheyusedareanon-Euclideangeneralizationofgradientdescentwithboundsonitsperformance,thedefinitionandefficientconstructionofanewtypeofflowsparsifier,andafastobliviousroutingschemeforflowproblems.

Anothermajorcategoryofmax-flowaccelerationalgorithmisbasedonpreprocessing,i.e.,reducingthegraphsizeforacceleration.Specialsubgraphsarecontractedtohelpreducethesizeofthegraph,butcanalsocauseachangeinthemax-flowvaluebetweennodepairs.Therearemanydifferentsubgraphcontractionconditionsthatcanbeusedtocontractthegraph.Thefirsttypeofcontractionconditionistomaintainthemax-flowvaluesintheoriginalgraph.

ScheuermannandRosenhahn

(

2011

)proposedanalgorithmforimagesegmentation,andthebasicideaistosimplifytheoriginalgraphwhilemaintainingthemax-flowproperties.ThealgorithmconstructsaSlimGraphbymergingnodesthatareconnectedbysimpleedges,andtheresultingslimGraphcanbeappliedwithstandardmax-flowalgorithms.

LiersandPardella

(

2011

)presentedflow-conservingconditionsunderwhichsubgraphscanbecontractedtoasinglenode.Aftercapacitynormalization,thealgorithmattemptedtoshrinkthemaxedgeamongalledgesbetweentwonodes,orbetweenthreenodes,orbetweenaspecialclusterofnodes.Basedontheconditions,theresearchersalsoproposedatwo-stepmax-flowalgorithmtosolvetheprobleminstancesfromphysicsandcomputervision.

Therearealsographcontractionconditionswithnosizelimitthatcansignificantlyreducethegraphsizebutattheexpenseofchangedmax-flowvalues.

Zhangetal.

(

2011

)examinedthegraphcontractionconditionofmaximalclique.Bycontractingtheappropriatemaximumcliqueinthenetwork,thealgorithmcanapproximatethemax-flowresultefficiently.

Zhangetal.

(

2012

)leveragedthegraphcommunityforacceleration.Thecommunitydetectionalgorithmisappliedto

detectallcommunitiesinanetwork,wherethesourceandsinknodes

wereestablishedtofindneighbor-node-setastocontracttheoriginalgraphformax-flowacceleration.

Existingresearchhasalsoacceleratedmax-flowcalculationbycon-structingahigh-leveloverlay.Theoverlaypathcanhelpaccelerateordirectlyobtainmax-flowresults.Awell-knownoverlayistheGomory–Hutree(

Gusfield

,

1990

).Itisbuiltbyorganizingallthe𝑁nodesoftheoriginalgraphintoatree,andtheminimumedgecapacityinthepathbetweenanytwonodesisthemax-flowvaluebetweenthem.TheGomory–Hutreeisnotwidelyusedduetoitshighcomplexity,e.g.,it

needs

𝑁−1max-flowcalculationtobuildaGomory–Hutree.

Zhao

etal.

(

2014

)viewedtheoriginalgraphasalayergraphbetweenthesourceandsinknodes,e.g.,nodesatthesamedistancefromthesourcenodeformalayer.Themax-flowvaluecanbecalculatedasthesmallestofallthemax-flowvaluesbetweenadjacentlayers.

Weietal.

(

2018

)attemptedtodividetheoriginalgraphintosubgraphs(i.e.,thebi-connectedcomponent)withcutnodesasboundarynodes.Max-flowcalculationbetweenanygivennodepairinvolvesonlyaportionofcutnodesandsubgraphs,anditcanbedividedintoseveralsub-calculationsbetweenadjacentsubgraphs.

Alltheabovemax-flowcalculationscanbefurtheracceleratedby

algorithm

parallelization(

Baumstark,Blelloch,&Shun

,

2015

;

Jiadong,

Zhengyu,

&Bo

,

2012

;

Khatri,Samar,Behera,etal.

,

2022

).

Khatri

etal.

(

2022

)proposedseveraltechniquestoimprovetheperformanceofthepush-relabelmax-flowalgorithmonGPUs.Theythencombinethepush-relabelalgorithmwiththeirnewlyproposedpull-relabelalgo-rithmtoconstructapull-push-relabelmaxflowalgorithm.Experimentsusingreal-worldandsyntheticgraphsshowitssignificantacceleration

ratio

inthreerepresentativemaximumflowapplications.

Baumstark

etal.

(

2015

)foundthatthewell-knownhighestlabel-basedpush-relabelimplementationisnotoptimalfortheircollectedbenchmarkinstances.Instead,thefirst-in-first-outpush-relabelalgorithmappearstobemoresuitableandisimplementedasasharedmemory-basedparallelalgorithm.Aparallelversionofglobalrelabelingisusedtoimprovespeed.Experimentalresultsshowthesuperiorityofthisalgo-rithmoverthefastestexistingimplementation.

Jiadongetal.

(

2012

)proposedtwoGPU-basedmaximumflowalgorithms,wherethefirstisasynchronousandlockfreeandthesecondissynchronizedviatheprecoloringtechnique.ExperimentalresultsshowthattheGPU-basedalgorithmoutperformstheCPU-basedalgorithmbyaboutthreetimes,andinGPU-basedalgorithms,thesynchronousalgorithmoutperformstheasynchronousalgorithminsomesparsegraphs.

Model

Themax-flowproblem

Themax-flowproblembetweennodes𝑠and𝑡inadirectedgraphisformulatedinEq.(

1

).𝑉isthecollectionofallnodesinthegraph,and

𝐸isthecollectionofalldirectededgesinthegraph.Foradirectededge

𝑒fromnode𝑣to𝑤,denote𝑐𝑒≥0asthecapacityof𝑒,and𝑓(𝑣,𝑤)≤𝑐𝑒or

| |

𝑓(𝑒)≤𝑐𝑒astheamountofflowfrom𝑣to𝑤,themax-flowproblemistofindthemaximumsumofflowoutof𝑠andinto𝑡,asshowninEq.(

1

).Here𝛿−(𝑣)={𝑤∈𝑉(𝑤,𝑣)∈𝐸}and𝛿+(𝑣)={𝑤∈𝑉(𝑣,𝑤)∈𝐸}

aretwosetsofadjacentnodesof𝑣.Theconstraintsoftheproblemare:

(∑

(a)theflowvalueoneachedgeshallnotexceedthecapacityoftheedge,and(b)thevalueofallflowsintoanodemustbethesameasthatoutsidethenode.Thesolutionisthemax-flowvalue𝑓̂(𝑠,𝑡)andtheflowvaluesatalledges.Wemainlyfocusontheprobleminconnectedundirectedgraphs,whichcanberepresentedasdirectedgraphsbytransformingeachundirectededgeintotwodirectededgesbetweenadjacentnodes.

arenotdividedintoanycommunities.Foreachcommunityfoundinthenetwork,thealgorithmwillvalidatethecontractconditionthatthetotalamountflowingintoacommunitycanflowthroughthecommunity,whichwillbecontractedifconditionshold.

Zhaoetal.

𝑓̂(𝑠,𝑡)=𝑚𝑎𝑥

𝑣∈𝛿+(𝑠)

⎧⎪0≤𝑓𝑒≤𝑐𝑒∀𝑒∈𝐸(𝑎)

𝑓(𝑠,𝑣))

(1)

(

2012

)examinedthegraphcontractionconditioncalledneighbor-node-set,whichisonenodeplusitsneighboringnodes.Specialconditions

𝑠.𝑡.

3 ⎪⎩

𝑤∈∑𝛿−(𝑣)

𝑓(𝑤,𝑣)=

𝑤∈𝛿+(𝑣)

𝑓(𝑣,𝑤)∀𝑣∈𝑉−{𝑠,𝑡},(𝑏)

W.Weietal.

ExpertSystemsWithApplications225(2023)120151

PAGE

4

Definition3.5.Intheoriginalgraph,TBGcontractionistoreplaceallnodesandedgesintheTBGasanedgebetweenitstwoBNs,andtheedgecapacityisthemax-flowvaluebetweenBNsthroughnodesinsidetheTBG.

TBGcanhelpspeedupmax-flowcalculationbecauseTBGcontrac-tiondoesnotchangethemaximumflowvaluebetweenanynodesoutsidetheTBG.

Lemma3.6.ForaTBG,themax-flowvaluebetweenthenodepairsoutsidetheTBGintheoriginalgraphisthesameasinthegraphwiththecontractedTBG.

Fig.2.AnexampleofTBGdefinedin

Definition

3.4

(Allsolid-linenodesandtheedgesconnectingthemconstituteTBG).

Thebi-connectedcomponenttree

Givenanundirectedgraphof𝐺withthesetofallnodes𝑉andthesetofalledges𝐸,wefirstintroducethecoredefinitionsthatarerelatedtoouralgorithm.Ifnotmentioned,allthegraphsmentionedareundirectedgraphs.

Definition3.1.Acutnodeinagraphisanodewhoseremovalwilldividethegraphintoatleasttwodisconnectedsubgraphs.Bi-connectedcomponent(BCC)isthemaximumconnectedsubgraphinwhichanytwonodeshaveatleasttwodisjointpathsbetweenthem.

NotethatthecutnodeswillsplittheoriginalgraphintoBCCs.Anexampleisshownin

Fig.

4

(a),whereanygraphcanberepresentedasthegraphontheleft,withtheBCCtreeontheright.Itisobviousthatremovinganycutnodewilldisconnectthegraph.IthasbeenfoundthatanygivengraphcanbetransformedintoaBCCtreewithcutnodeconnectingtheseBCCs(

Hopcroft&Tarjan

,

1973

)(asshownontherightof

Fig.

4

(a)):

Theorem3.2.AnyconnectedgraphcanbetransformedintoatreeofBCCs.

Proof.Pleaserefertopaper(

Weietal.

,

2018

).

Thetwo-boundarygraph

Thedefinitionofboundarynodeisintroducedfirst.

Definition3.3. Foraconnectedsubgraph𝐺′in𝐺withnodeset

𝑉′⊂𝑉andedgeset𝐸′⊂𝐸,aboundarynode(BN)of𝐺′isanode

𝑛∈𝑉′thathasatleastoneadjacentnode𝑛′∈𝑉−𝑉′.

Inthepaper,wefocusonthekindofsubgraphthatcontainsonlytwoBNs.

Definition3.4.Thetwo-boundarygraph(TBG)isaconnectedsub-graphin𝐺withonlytwoBNs.

AnexampleofTBGisgivenin

Fig.

2

,whereallsolid-linenodes(andtheedgesbetweenthem)constituteTBG.AnyothernodeexceptBNs(nodes1and2)intheTBGiscalledtheinnernode(IN),i.e.,allINsandBNsin

Fig.

2

constituteTBG.AnynodeoutsidetheTBGiscalledtheouternode(ON)oftheTBG.

TBGisusefulbecausebycalculatingthemax-flowvaluebetweenitsBNsinsidetheTBG,wecancontracttheTBGasanedgebetweenitsBNs,andtheedgecapacityisjustthemax-flowvaluebetweenitsBNsinsidetheTBG:

Proof.

Forthemax-flowprobleminanundirectedgraph,itneedstobeconvertedtotheproblemintheequivalentdirectedgraph,thatis,theundirectededgebetweentwonodesisconvertedintotwodirectededgesofthetwonodeswiththesamecapacityastheundirectededgecapacity.Anyin-edgeflowisadirectedflowwiththesamedirectionasthedirectededge.

Denotethemax-flowfrom𝑠to𝑡as𝑓̂(𝑠,𝑡),giventwonodes𝑠and𝑡

intheequivalentdirectedgraphcorrespondingtotheundirectedgraph,itisshownbelowthatforeachpairofadjacentnodes𝑎and𝑏,onlyoneedgeof(𝑎,𝑏)and(𝑏,𝑎)hasapositiveflowvalueinthefinalmax-flowresult.

Becausethemaximumvaluesofvariousaccuratemaximumflowalgorithmsareconsistent,weuseoneofthecommonlyusedmethods,theaugmentingpath-basedmethod,toillustratetheaboveconclusion.Formax-flowfrom𝑠to𝑡,thecoreideaistofindandfillasimplepathwithpositivevalueflowbetween𝑠and𝑡ineachiterationuntilnofurtherpathcanbefoundaftermanyiterations.Thepathfindingisappliedtotheresidualgraphupdatedineachiteration.Forexample,intheoriginalgraphforthedirectededge(𝑎,𝑏)withitscapacity𝑐𝑜(𝑎,𝑏)andflowvalue

𝑓𝑜(𝑎,𝑏)afteraniteration,intheresultingresidualgraphtherewillbeanedge(𝑎,𝑏)with𝑐(𝑎,𝑏)=𝑐𝑜(𝑎,𝑏)−𝑓𝑜(𝑎,𝑏),andanedge(𝑏,𝑎)with𝑐(𝑏,𝑎)=𝑐𝑜(𝑏,𝑎)+𝑓𝑜(𝑎,𝑏).

Notethatintheaugmentingpath-basedmethod,theresidualcapacityof(𝑏,𝑎)introducedbytheflowonthereverseedgeisusedatfirst,andusingthecapacityofoneedgeintheresidualgraphdecreasestheflowvalueonitsreverseedgeintheoriginalgraph.Thus,inoneiteration,sincethesimplepathallowsnoloopingintheresidualgraph,onlyoneofthetwoedges(𝑎,𝑏)and(𝑏,𝑎)willbeincludedinthesimplepathbetween𝑠and

𝑡.Soafterthefirstiteration,onlyoneedgehasflowintheoriginalgraphandassumethatitisthedirectededge(𝑎,𝑏)withitscapacity𝑐𝑜(𝑎,𝑏)andflowvalue𝑓𝑜(𝑎,𝑏).Assumingthatinthenextiterationtheedge(𝑏,𝑎)isincludedinthepathwithflow

𝑓(𝑏,𝑎),if𝑓𝑜(𝑎,𝑏)≥𝑓(𝑏,𝑎),intheoriginalgraphitwillcausetheflowvalueof(𝑎,𝑏)todecreasei.e.,(𝑎,𝑏)withupdatedflowvalue

𝑓𝑜(𝑎,𝑏)−𝑓(𝑏,𝑎)and(𝑏,𝑎)withflowvalue0.

Orif𝑓𝑜(𝑎,𝑏)<𝑓(𝑏,𝑎),thenintheoriginalgraphtheflowvalueof(𝑎,𝑏)willdecreaseto0andtheflowvalueof(𝑏,𝑎)willbecomepositive𝑓(𝑏,𝑎)−𝑓𝑜(𝑎,𝑏).Theresultissimilarifedge(𝑎,𝑏)isselected,i.e.,onlyoneedgeofthetwoedgesbetweentwonodeshasapositiveflowvalueintheupdatedoriginalgraphofeachiteration.

Thus,itisobviousthatintheresultingoriginalgraphofeachiteration(includingthefinalresultgivenbythefinaliteration),onlyoneedgeof(𝑎,𝑏)and(𝑏,𝑎)isusedtoholdtheflow.

Giventwonodes𝑠and𝑡intheequivalentdirectedgraphcorre-spondingtotheundirectedgraph,when𝑓̂(𝑠,𝑡)isdeployedinthegraph,𝑓̂(𝑡,𝑠)withthesamemax-flowvaluecanbedeployedinthegraphatthesametime.

Accordingtoitem

(2)

above,thereverseedgeofeachpositive-flowedgeisnotusedinthemax-flowresult.Itisobviousthatfor

eachedge(𝑎,𝑏)withpositiveflowvalue𝑓(𝑎,𝑏)inthemax-flow

Itisclearthat𝑓𝑖≤𝑓̂(𝐵,𝐵)and𝑓𝑖≤𝑓̂(𝐵,𝐵)inanymax-flow

1 12 2 21

resultbetween𝑠and𝑡,bymovingtheflowinedge(𝑎,𝑏)toedge

(𝑏,𝑎)withsameflowvalue(whichisequivalenttoreversingtheinandoutflowsofeachnode),theper-nodeflowconstraints

resultbetween𝑠and𝑡outsidetheTBG.Becauseanydeployed

flowsmustbefeasibletoreachthetargetnode𝑡inthemax-flowresult.Orif𝑓𝑖>𝑓̂(𝐵,𝐵)anditmustflowoutofTBGthrough𝐵2,

̂ 1 12

inEq.(

1

)alsoholdanditwillgeneratethemax-flowresult𝑓(𝑡,𝑠)

withsamemax-flowvaluefromnodes𝑡to𝑠.Andsinceeachin-edgeflowof𝑓̂(𝑡,𝑠)sitsatadifferentedgefromitscounterpartin

𝑓̂(𝑠,𝑡),𝑓̂(𝑡,𝑠)and𝑓̂(𝑠,𝑡)onlysharenodesandthustheirflowswillnotaffecteachother,itisclearthat𝑓̂(𝑠,𝑡)and𝑓̂(𝑡,𝑠)canbedeployedinthegraphatthesametime.

DenotetheboundarynodeofthegivenTBGas𝐵1and𝐵2.Denotethemax-flowvaluebetween𝐵1and𝐵2as𝑓̂𝑇𝐵𝐺,the

whichwillgenerateanin-edgeflowdistributionwiththetotal

flowvaluebetween𝐵1and𝐵2insideTBGlargerthan𝑓̂(𝐵1,𝐵2)

and𝑓̂(𝐵2,𝐵1),whichcontradictsthemax-flowdefinition.

Asaresult,iftheTBGiscontractedastheundirectededge(or

directededgesinbothdirections)between𝐵1and𝐵2withthemax-flowvalue𝑓̂(𝐵1,𝐵2)==𝑓̂(𝐵2,𝐵1),theflowsinto𝐵1or𝐵2inthemax-flowresultcanbekeptunchangedandthecapacitylimitis

met,sotheotherpartsofthemax-flowresultarekeptthesame.

̂𝑇𝐵𝐺

(𝐵1,𝐵2)

Inaddition,themax-flowvaluebetween𝑠and𝑡willnotincrease

𝑓(𝐵2,𝐵1)withthesamemax-flowvaluecanbedeployedinthe

TBGatthesametime.

Thisisobviousfromtheitem

(3)

above.

Denotethemax-flowfrom𝑠to𝑡as𝑓̂(𝑠,𝑡),giventwonodes𝑠and𝑡intheequivalentdirectedgraphcorrespondingtotheundirectedgraph,itisshownbelowthatthereisnocycleflowpathinthe

asthecontractionwillnotgenerateanynewaugmentingpathbetween𝑠and𝑡.Ifthebottleneckedgetofindamoreaug-mentingpathisnotinsidetheTBG,TBGcontractionwillkeeptheotherpartofthemax-flowresultandthebottleneckedgeunchanged,andthusnonewaugmentingpathwillbegenerated.IfthebottleneckedgeisinsidetheTBG,theremustbe𝑓𝑖==

max-flowresults.Thatis,intheoriginalgraphthedirectededge

𝑓̂

1

or𝑓2==𝑓̂

(𝐵1,𝐵2) 1

(𝐵2,𝐵1)(orTBGcanindependentlyadjustthe

withpositiveflowwillnotformacycle.

Supposethatwhenasimplepathbetween𝑠and𝑡(i.e.,𝑝)isfoundintheresidualgraphinoneiteration,therewillbeacycleflowpathintheupdatedoriginalgraph.Supposeintheoriginalgraphthepathsegmentcontainingtheoverlappednodesinthelooppathandthesimplepathisboundedbynodes𝑎and𝑏.Itisclearthatthereareatleasttwodirectedpathsinreversedirectionswithpositiveflowbetween𝑎and𝑏intheoriginalgraph,anddenotethemas𝑝𝑜(𝑎,𝑏)and𝑝𝑜(𝑏,𝑎)andsuppose𝑝𝑜(𝑎,𝑏)asthepathsegmentinthefoundsimplepathintheresidualgraph,whichisalsothesimplepathintheoriginalgraph.So,beforethesimplepath𝑝isfound,𝑝𝑜(𝑏,𝑎)alreadyexistsintheoriginalgraphandthereiscertainlyasimplepathwithresidualcapacitiesbetween𝑎and𝑏intheresidualgraph(i.e.,𝑝(𝑎,𝑏)).Andnotalledgeshaveresidualcapacityinthe𝑝𝑜(𝑎,𝑏)appliedintheresidualgraphortherewillbeacycleflowpathbeforethesimplepath

𝑝.Thatis,givenapath𝑝(𝑎,𝑏)withresidualcapacitiesinallitsedges,thealgorithmchoosesthepath𝑝𝑜(𝑎,𝑏)withsomeedgesthatdonothaveresidualcapacitiesintheresidualgraph,whichcontradictsthefactthatintheaugmentingpath-basedmethod,residualcapacitywillbeusedfirst.Thus,inthemax-flowresultoftheoriginalgraph,thedirectededgewithpositiveflowwillnotformacycle.

Inthemax-flowresultbetweenanynodepair,𝑠and𝑡outsidea

TBGwithBN𝐵1and𝐵2,representtherespectiveflowvalueintotheTBGthrough𝐵1and𝐵2as𝑓𝑖and𝑓𝑖,onlyoneof𝑓𝑖and𝑓𝑖

internalflowtoallowmoreflowthroughtheTBG),sobykeepingtheedgecapacityaftercontractionas𝑓̂(𝐵1,𝐵2),thecontractionwillnotgenerateanewaugmentingpath.

Asaresult,TBGcontractionwillmaintainthemax-flowresultbeforecontractionandwillnotgenerateanewaugmentingpathtochangethemax-flowresult.

Thelemmaisproved.

Asaresult,formax-flowcalculationbetweenanynodepairoutsidetheTBG,theTBGcanbetreatedasanedgebetweenitsBNs.AndforTBGsthatdonotcontainthegivennodepair,theycanbecontractedonebyonewhilethemax-flowvalueofthenodepairremainsun-changedaftereachcontraction.Thatis,allTBGsthatdonotcontainthegivennodepaircanbecontractedatthesametime.

ItisalsofoundthatfortheTBGinsideaBCC,theremainingportionoftheBCCafterremovingtheTBGisstillaTBG,whichisdefinedastheinverseTBGoftheoriginalTBG:

Lemma3.7.InaBCCwithnodeset𝑉̂andedgeset𝐸̂,givenanyTBGinsideitwithnodeset𝑉′⊂𝑉̂andedgeset𝐸′⊂𝐸̂withthesetoftwoboundarynodes𝑉𝐵.TheBCCportionoutsidetheTBGwithnodeset

𝑉′′=𝑉̂−𝑉′+𝑉𝐵andedgeset𝐸′′=𝐸̂−𝐸′isstillaTBGwiththesameBNs.

Proof.BecausethereareatleasttwopathswithoutdisjointingnodesbetweenanytwonodesinaBCC,neighborsaandbofboundarynodes

isgreaterthan0.

1 2 1

2 𝐵1and𝐵2outsidetheTBGhavepathsthatdonotpassthrough𝐵1and

Thus,ifboth𝑓𝑖and𝑓𝑖arenotzerointhemax-flowresult,since

𝐵2.Byadding𝐵1and𝐵2andtheiredgeswiththerespectiveneighbors

1 2 𝑎and𝑏,itwillgenerateapathbetween𝐵1and𝐵2intheBCCportion

theflowintotheTBGfrom𝐵2canonlyexitTBGthrough𝐵1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论