版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Contentslistsavailableat
ScienceDirect
ExpertSystemsWithApplications
journalhomepage:
/locate/eswa
ExpertSystemsWithApplications225(2023)120151
Maximumflowaccelerationbytraversingtreebasedtwo-boundarygraph contraction
WeiWei
a
,
b
,PengpengWang
a
,
b
,YaboDong
c
,
∗
aKeyLaboratoryofGrainInformationProcessingandControl(HenanUniversityofTechnology),MinistryofEducation,Zhengzhou450001,China
bHenanProvincialKeyLaboratoryofGrainPhotoelectricDetectionandControl,HenanUniversityofTechnology,Zhengzhou450001,China
cCollegeofcomputerscienceandtechnology,ZhejiangUniversity,Hangzhou310027,China
ARTICLEINFO ABSTRACT
Keywords:
Tree-cutmappingBoundarynodeMaximumflowGraphcontractionOverlay
Themaximumflow(max-flow)problemissofundamentalthatthecorrespondingalgorithmshavemanyapplicationsinmanyscenarios.Acommonaccelerationstrategyistoreducegraphsizebycontractingsubgraphs,buttherearefewcandidatesubgraphswithnosizelimitthatcanguaranteeexactmax-flowsolutionsaftercontraction.Weaddanewsubgraphcontractionconditiontotheexistingconditionswithcorrespondingefficientlocatingalgorithm,andweproposeamax-flowaccelerationalgorithmusingtraversingtree-basedcontraction(TTCMax).TTCMaxcanworkefficientlyonlybyusingconnectivityinformation.Throughdepth-firsttraversing,itcancontracttwo-boundarygraphsofanysizeintoedges,andthenaccelerateexistingmax-flowalgorithmsusingcontractedgraphs.Large-scalerandomandreal-worldgraphexperimentstestitseffectandtheaccelerationratiocanbemorethan50timeswithlowgraphreductionoverhead,indicatingthattheproposedalgorithmcanbeusedasaneffectivecomplementtoexistingalgorithms.
Introduction
Asafundamentalandwidelyinvestigatedproblem,themaximumflow(max-flow)problemanditsdualproblem,theminimumcut(min-cut)problemhavemanyapplicationsandareoftenusedassubroutinesinotheralgorithms(
Sherman
,
2009
).Manyadvanceshavebeenmade
in
thedevelopmentofefficientalgorithmsforthisproblem(
Goldberg
&Rao
,
1998
).Fastsolutionscanbefoundthroughalgorithm-orientedacceleration(
Boykov&Kolmogorov
,
2004
;
Goldberg&Tarjan
,
2014
;
Verma&Dhruv
,
2012
),orgraphdata-orientedacceleration(
Gusfield
,
1990
;
Wei,Liu,&Zhang
,
2018
;
Zhang,Hua,Jiang,Zhang,&Chen
,
2011
;
Zhang,Xu,Hua,&Zhao
,
2012
;
Zhao,Su,Liu,&Zhang
,
2014
;
Zhao,Xu,Hua,&Zhang
,
2012
).Asfordata-orientedalgorithms,thecoreideaistoreducethesizeoftheinput,suchasreducingthesizeofthegraphbycontractingsubgraphstonodes.Therearemanycontraction-basedalgorithmsthatexploitvarioussubgraphcontractionconditions.Unfortunately,mostofthesealgorithmscanonlyobtainapproximatedvaluewhenusingsubgraphcontractionconditionwithnosizelimit.
Inthepaper,weproposealosslessalgorithmthatemploysasub-graphcontractionconditionwithnosizelimit,andatoyexampleisgivenin
Fig.
1
toclarifythedifferencebetweentheproposedmethodandexistingcontraction-basedmethods.Unlikeexistingnode-orientedcontractions,theproposedalgorithmcontractssubgraphsintoedges.
Thecorepartisaroutinethatcanefficientlysearchforthetwo-boundarygraph(TBG),thatis,thesubgraphcontainingtwoboundarynodesthatseparateitfromotherpartsofthewholegraph.Experimentsvalidateitseffectivenessbyusinglarge-scalegraphscontainingupto107nodes.
Theworkadvancesthestateoftheartbyintroducinganewlosslessandgeneralsize-freecontractionconditionwithahighlyefficientwaytolocatethecorrespondingsubgraphs.Specifically,thetheoreticalcon-tributionsinclude:(a)Weprovethatthecontractionoftwo-boundarygraphscanmaintaintheexactmax-flowresult,whichleadstothecontractionalgorithmthathasfewconstraints(e.g.,unlimitedsubgraphsize)andcanensureaccuratesolution.Theseconditionshavehardlybeenmetsimultaneouslybefore.(b)Tofindthetwo-boundarygraph,weproposetousethemappingbetweenthedepth-firsttraversaltreeandthenodecutset(NCS).ThemethodcanefficientlysearchfortheNCScontainingonlytwonodes(i.e.,twonodesoftheboundedgraph).
(c)WeproposethestrategyofselectingallreusableTBGsforagivennodepair.
Inaddition,thepracticalcontributionsare:(a)Toensurealgorithmgenerality,weproposetoidentifythebi-connectedcomponent(BCC)firstandthenTBGineachBCC,toensurealgorithmgenerality.SinceTBGpartiallyoverlapswithsomeexistingandinefficientsubgraph
∗Correspondingauthor.
E-mailaddresses:
weiwei_ise@
(W.Wei),
wangpengpeng_do@
(P.Wang),
dongyb@
(Y.Dong).
/10.1016/j.eswa.2023.120151
Received10June2022;Receivedinrevisedform11March2023;Accepted12April2023
Availableonline20April2023
0957-4174/©2023ElsevierLtd.Allrightsreserved.
W.Weietal.
ExpertSystemsWithApplications225(2023)120151
2
Fig.1.ExamplesshowingthedifferencebetweenTTCMaxandexistingcontractionalgorithms(usedinSection
1
).
contractionconditions,itcannotbeapplieddirectly.(b)Toensurealgo-rithmefficiencyandavoidthehighcomplexityofenumeratingTBGs,weintroducealowcomplexityrandomsearchalgorithm,whichcanhelpfindenoughTBGsforaccelerationatasmallcost.Experimentalresultsshowthatthealgorithmcanaccelerateexistingalgorithmsingeneratedgraphfamiliesandreal-worldgraphs,whiletheaccelerationratiocanbeuptotwoordersofmagnitude,andthuscanbeusedasaneffectivecomplementtoexistingalgorithms.
Literaturereview
Classicaccelerationattemptsmainlyfocusedonalgorithmtuning.Existingalgorithmsevolveintwodirections:theaugmentingpath-basedalgorithms(
Jack&Richard
,
1972
)andpreflow-basedalgo-rithms(
Goldberg&Tarjan
,
1988
).Theaugmentingpath-basedalgo-rithmsfocusonhowtofindasuitablepathbetweensourceandsinknodesineachiterationofmax-flowcomputation,sothatthewholecomputationcanbeefficientlyaccelerated.
JackandRichard
(
1972
)
W.Weietal.
ExpertSystemsWithApplications225(2023)120151
providedselectionrulesthatcanhelpavoidimproperselectionofaugmentingpathsleadingtoseverecomputationaldifficulties.Anewalgorithmusingtheshortestaugmentingpathwasproposed.
Karzanov
(
1974
)explicitlyintroducedtheblockingflowmethod,whichaug-mentedalongamaximumsetofshortestpathsbyfindingablockingflow.Suchaugmentationincreasedtheshortestaugmentingpathlengthandthusacceleratedtheshortestaugmentingpathmethod.Unlikeaug-mentingpath-basedmethods,push-relabel-basedmethodsmaintainedapreflowanditerativelyappliedpushoperationstoupdatethepreflow,
and
usedrelabeloperationstoupdatenodedistances(
Goldberg&
Tarjan
,
1988
).Here,apreflowisdifferentfromaflowinthatthetotalamountflowingintoanodecantemporarilyexceedthetotalamountflowingout,andtheproposedalgorithmpushesthelocalflowexcesstowardsthesinkalongtheestimatedshortestpath.
Inadditiontotuningalgorithmsthatkeepexactmax-flowvalues,
there
isalsoresearchintotradingaccuracyforspeed.
Christiano,Kel-
ner,Madry,Spielman,andTeng
(
2011
)proposedanewapproximationalgorithmforthemax-flowproblem.Bysolvingalistofelectricalflowproblemswiththesolutionofalinearequationsystem,thealgorithmcanbefasterthantheprevious𝑂(𝑁3∕2)algorithms.
Sherman
(
2013
)proposedanewalgorithmusing𝛼-congestion-approximators.Theal-gorithmmaintainedanarbitraryflowthatmayhavesomeresidualexcessanddeficits,andittookstepstominimizeapotentialfunctionmeasuringthecongestionofthecurrentflowplusanover-estimate
of
thecongestionrequiredtoroutetheresidualdemand.
Jonathan,
YinTat,Lorenzo,andAaron
(
2014
)introducedanewframeworkforapproximatelysolvingflowproblemsandappliedittoprovideasymptoticallyfasteralgorithmsformax-flowandmaximumconcur-rentmulti-commodityflowproblems.Thetechniquestheyusedareanon-Euclideangeneralizationofgradientdescentwithboundsonitsperformance,thedefinitionandefficientconstructionofanewtypeofflowsparsifier,andafastobliviousroutingschemeforflowproblems.
Anothermajorcategoryofmax-flowaccelerationalgorithmisbasedonpreprocessing,i.e.,reducingthegraphsizeforacceleration.Specialsubgraphsarecontractedtohelpreducethesizeofthegraph,butcanalsocauseachangeinthemax-flowvaluebetweennodepairs.Therearemanydifferentsubgraphcontractionconditionsthatcanbeusedtocontractthegraph.Thefirsttypeofcontractionconditionistomaintainthemax-flowvaluesintheoriginalgraph.
ScheuermannandRosenhahn
(
2011
)proposedanalgorithmforimagesegmentation,andthebasicideaistosimplifytheoriginalgraphwhilemaintainingthemax-flowproperties.ThealgorithmconstructsaSlimGraphbymergingnodesthatareconnectedbysimpleedges,andtheresultingslimGraphcanbeappliedwithstandardmax-flowalgorithms.
LiersandPardella
(
2011
)presentedflow-conservingconditionsunderwhichsubgraphscanbecontractedtoasinglenode.Aftercapacitynormalization,thealgorithmattemptedtoshrinkthemaxedgeamongalledgesbetweentwonodes,orbetweenthreenodes,orbetweenaspecialclusterofnodes.Basedontheconditions,theresearchersalsoproposedatwo-stepmax-flowalgorithmtosolvetheprobleminstancesfromphysicsandcomputervision.
Therearealsographcontractionconditionswithnosizelimitthatcansignificantlyreducethegraphsizebutattheexpenseofchangedmax-flowvalues.
Zhangetal.
(
2011
)examinedthegraphcontractionconditionofmaximalclique.Bycontractingtheappropriatemaximumcliqueinthenetwork,thealgorithmcanapproximatethemax-flowresultefficiently.
Zhangetal.
(
2012
)leveragedthegraphcommunityforacceleration.Thecommunitydetectionalgorithmisappliedto
detectallcommunitiesinanetwork,wherethesourceandsinknodes
wereestablishedtofindneighbor-node-setastocontracttheoriginalgraphformax-flowacceleration.
Existingresearchhasalsoacceleratedmax-flowcalculationbycon-structingahigh-leveloverlay.Theoverlaypathcanhelpaccelerateordirectlyobtainmax-flowresults.Awell-knownoverlayistheGomory–Hutree(
Gusfield
,
1990
).Itisbuiltbyorganizingallthe𝑁nodesoftheoriginalgraphintoatree,andtheminimumedgecapacityinthepathbetweenanytwonodesisthemax-flowvaluebetweenthem.TheGomory–Hutreeisnotwidelyusedduetoitshighcomplexity,e.g.,it
needs
𝑁−1max-flowcalculationtobuildaGomory–Hutree.
Zhao
etal.
(
2014
)viewedtheoriginalgraphasalayergraphbetweenthesourceandsinknodes,e.g.,nodesatthesamedistancefromthesourcenodeformalayer.Themax-flowvaluecanbecalculatedasthesmallestofallthemax-flowvaluesbetweenadjacentlayers.
Weietal.
(
2018
)attemptedtodividetheoriginalgraphintosubgraphs(i.e.,thebi-connectedcomponent)withcutnodesasboundarynodes.Max-flowcalculationbetweenanygivennodepairinvolvesonlyaportionofcutnodesandsubgraphs,anditcanbedividedintoseveralsub-calculationsbetweenadjacentsubgraphs.
Alltheabovemax-flowcalculationscanbefurtheracceleratedby
algorithm
parallelization(
Baumstark,Blelloch,&Shun
,
2015
;
Jiadong,
Zhengyu,
&Bo
,
2012
;
Khatri,Samar,Behera,etal.
,
2022
).
Khatri
etal.
(
2022
)proposedseveraltechniquestoimprovetheperformanceofthepush-relabelmax-flowalgorithmonGPUs.Theythencombinethepush-relabelalgorithmwiththeirnewlyproposedpull-relabelalgo-rithmtoconstructapull-push-relabelmaxflowalgorithm.Experimentsusingreal-worldandsyntheticgraphsshowitssignificantacceleration
ratio
inthreerepresentativemaximumflowapplications.
Baumstark
etal.
(
2015
)foundthatthewell-knownhighestlabel-basedpush-relabelimplementationisnotoptimalfortheircollectedbenchmarkinstances.Instead,thefirst-in-first-outpush-relabelalgorithmappearstobemoresuitableandisimplementedasasharedmemory-basedparallelalgorithm.Aparallelversionofglobalrelabelingisusedtoimprovespeed.Experimentalresultsshowthesuperiorityofthisalgo-rithmoverthefastestexistingimplementation.
Jiadongetal.
(
2012
)proposedtwoGPU-basedmaximumflowalgorithms,wherethefirstisasynchronousandlockfreeandthesecondissynchronizedviatheprecoloringtechnique.ExperimentalresultsshowthattheGPU-basedalgorithmoutperformstheCPU-basedalgorithmbyaboutthreetimes,andinGPU-basedalgorithms,thesynchronousalgorithmoutperformstheasynchronousalgorithminsomesparsegraphs.
Model
Themax-flowproblem
Themax-flowproblembetweennodes𝑠and𝑡inadirectedgraphisformulatedinEq.(
1
).𝑉isthecollectionofallnodesinthegraph,and
𝐸isthecollectionofalldirectededgesinthegraph.Foradirectededge
𝑒fromnode𝑣to𝑤,denote𝑐𝑒≥0asthecapacityof𝑒,and𝑓(𝑣,𝑤)≤𝑐𝑒or
| |
𝑓(𝑒)≤𝑐𝑒astheamountofflowfrom𝑣to𝑤,themax-flowproblemistofindthemaximumsumofflowoutof𝑠andinto𝑡,asshowninEq.(
1
).Here𝛿−(𝑣)={𝑤∈𝑉(𝑤,𝑣)∈𝐸}and𝛿+(𝑣)={𝑤∈𝑉(𝑣,𝑤)∈𝐸}
aretwosetsofadjacentnodesof𝑣.Theconstraintsoftheproblemare:
(∑
(a)theflowvalueoneachedgeshallnotexceedthecapacityoftheedge,and(b)thevalueofallflowsintoanodemustbethesameasthatoutsidethenode.Thesolutionisthemax-flowvalue𝑓̂(𝑠,𝑡)andtheflowvaluesatalledges.Wemainlyfocusontheprobleminconnectedundirectedgraphs,whichcanberepresentedasdirectedgraphsbytransformingeachundirectededgeintotwodirectededgesbetweenadjacentnodes.
arenotdividedintoanycommunities.Foreachcommunityfoundinthenetwork,thealgorithmwillvalidatethecontractconditionthatthetotalamountflowingintoacommunitycanflowthroughthecommunity,whichwillbecontractedifconditionshold.
Zhaoetal.
𝑓̂(𝑠,𝑡)=𝑚𝑎𝑥
𝑣∈𝛿+(𝑠)
⎨
⎧⎪0≤𝑓𝑒≤𝑐𝑒∀𝑒∈𝐸(𝑎)
𝑓(𝑠,𝑣))
(1)
(
2012
)examinedthegraphcontractionconditioncalledneighbor-node-set,whichisonenodeplusitsneighboringnodes.Specialconditions
𝑠.𝑡.
3 ⎪⎩
𝑤∈∑𝛿−(𝑣)
𝑓(𝑤,𝑣)=
∑
𝑤∈𝛿+(𝑣)
𝑓(𝑣,𝑤)∀𝑣∈𝑉−{𝑠,𝑡},(𝑏)
W.Weietal.
ExpertSystemsWithApplications225(2023)120151
PAGE
4
Definition3.5.Intheoriginalgraph,TBGcontractionistoreplaceallnodesandedgesintheTBGasanedgebetweenitstwoBNs,andtheedgecapacityisthemax-flowvaluebetweenBNsthroughnodesinsidetheTBG.
TBGcanhelpspeedupmax-flowcalculationbecauseTBGcontrac-tiondoesnotchangethemaximumflowvaluebetweenanynodesoutsidetheTBG.
Lemma3.6.ForaTBG,themax-flowvaluebetweenthenodepairsoutsidetheTBGintheoriginalgraphisthesameasinthegraphwiththecontractedTBG.
Fig.2.AnexampleofTBGdefinedin
Definition
3.4
(Allsolid-linenodesandtheedgesconnectingthemconstituteTBG).
Thebi-connectedcomponenttree
Givenanundirectedgraphof𝐺withthesetofallnodes𝑉andthesetofalledges𝐸,wefirstintroducethecoredefinitionsthatarerelatedtoouralgorithm.Ifnotmentioned,allthegraphsmentionedareundirectedgraphs.
Definition3.1.Acutnodeinagraphisanodewhoseremovalwilldividethegraphintoatleasttwodisconnectedsubgraphs.Bi-connectedcomponent(BCC)isthemaximumconnectedsubgraphinwhichanytwonodeshaveatleasttwodisjointpathsbetweenthem.
NotethatthecutnodeswillsplittheoriginalgraphintoBCCs.Anexampleisshownin
Fig.
4
(a),whereanygraphcanberepresentedasthegraphontheleft,withtheBCCtreeontheright.Itisobviousthatremovinganycutnodewilldisconnectthegraph.IthasbeenfoundthatanygivengraphcanbetransformedintoaBCCtreewithcutnodeconnectingtheseBCCs(
Hopcroft&Tarjan
,
1973
)(asshownontherightof
Fig.
4
(a)):
Theorem3.2.AnyconnectedgraphcanbetransformedintoatreeofBCCs.
Proof.Pleaserefertopaper(
Weietal.
,
2018
).
Thetwo-boundarygraph
Thedefinitionofboundarynodeisintroducedfirst.
Definition3.3. Foraconnectedsubgraph𝐺′in𝐺withnodeset
𝑉′⊂𝑉andedgeset𝐸′⊂𝐸,aboundarynode(BN)of𝐺′isanode
𝑛∈𝑉′thathasatleastoneadjacentnode𝑛′∈𝑉−𝑉′.
Inthepaper,wefocusonthekindofsubgraphthatcontainsonlytwoBNs.
Definition3.4.Thetwo-boundarygraph(TBG)isaconnectedsub-graphin𝐺withonlytwoBNs.
AnexampleofTBGisgivenin
Fig.
2
,whereallsolid-linenodes(andtheedgesbetweenthem)constituteTBG.AnyothernodeexceptBNs(nodes1and2)intheTBGiscalledtheinnernode(IN),i.e.,allINsandBNsin
Fig.
2
constituteTBG.AnynodeoutsidetheTBGiscalledtheouternode(ON)oftheTBG.
TBGisusefulbecausebycalculatingthemax-flowvaluebetweenitsBNsinsidetheTBG,wecancontracttheTBGasanedgebetweenitsBNs,andtheedgecapacityisjustthemax-flowvaluebetweenitsBNsinsidetheTBG:
Proof.
Forthemax-flowprobleminanundirectedgraph,itneedstobeconvertedtotheproblemintheequivalentdirectedgraph,thatis,theundirectededgebetweentwonodesisconvertedintotwodirectededgesofthetwonodeswiththesamecapacityastheundirectededgecapacity.Anyin-edgeflowisadirectedflowwiththesamedirectionasthedirectededge.
Denotethemax-flowfrom𝑠to𝑡as𝑓̂(𝑠,𝑡),giventwonodes𝑠and𝑡
intheequivalentdirectedgraphcorrespondingtotheundirectedgraph,itisshownbelowthatforeachpairofadjacentnodes𝑎and𝑏,onlyoneedgeof(𝑎,𝑏)and(𝑏,𝑎)hasapositiveflowvalueinthefinalmax-flowresult.
Becausethemaximumvaluesofvariousaccuratemaximumflowalgorithmsareconsistent,weuseoneofthecommonlyusedmethods,theaugmentingpath-basedmethod,toillustratetheaboveconclusion.Formax-flowfrom𝑠to𝑡,thecoreideaistofindandfillasimplepathwithpositivevalueflowbetween𝑠and𝑡ineachiterationuntilnofurtherpathcanbefoundaftermanyiterations.Thepathfindingisappliedtotheresidualgraphupdatedineachiteration.Forexample,intheoriginalgraphforthedirectededge(𝑎,𝑏)withitscapacity𝑐𝑜(𝑎,𝑏)andflowvalue
𝑓𝑜(𝑎,𝑏)afteraniteration,intheresultingresidualgraphtherewillbeanedge(𝑎,𝑏)with𝑐(𝑎,𝑏)=𝑐𝑜(𝑎,𝑏)−𝑓𝑜(𝑎,𝑏),andanedge(𝑏,𝑎)with𝑐(𝑏,𝑎)=𝑐𝑜(𝑏,𝑎)+𝑓𝑜(𝑎,𝑏).
Notethatintheaugmentingpath-basedmethod,theresidualcapacityof(𝑏,𝑎)introducedbytheflowonthereverseedgeisusedatfirst,andusingthecapacityofoneedgeintheresidualgraphdecreasestheflowvalueonitsreverseedgeintheoriginalgraph.Thus,inoneiteration,sincethesimplepathallowsnoloopingintheresidualgraph,onlyoneofthetwoedges(𝑎,𝑏)and(𝑏,𝑎)willbeincludedinthesimplepathbetween𝑠and
𝑡.Soafterthefirstiteration,onlyoneedgehasflowintheoriginalgraphandassumethatitisthedirectededge(𝑎,𝑏)withitscapacity𝑐𝑜(𝑎,𝑏)andflowvalue𝑓𝑜(𝑎,𝑏).Assumingthatinthenextiterationtheedge(𝑏,𝑎)isincludedinthepathwithflow
𝑓(𝑏,𝑎),if𝑓𝑜(𝑎,𝑏)≥𝑓(𝑏,𝑎),intheoriginalgraphitwillcausetheflowvalueof(𝑎,𝑏)todecreasei.e.,(𝑎,𝑏)withupdatedflowvalue
𝑓𝑜(𝑎,𝑏)−𝑓(𝑏,𝑎)and(𝑏,𝑎)withflowvalue0.
Orif𝑓𝑜(𝑎,𝑏)<𝑓(𝑏,𝑎),thenintheoriginalgraphtheflowvalueof(𝑎,𝑏)willdecreaseto0andtheflowvalueof(𝑏,𝑎)willbecomepositive𝑓(𝑏,𝑎)−𝑓𝑜(𝑎,𝑏).Theresultissimilarifedge(𝑎,𝑏)isselected,i.e.,onlyoneedgeofthetwoedgesbetweentwonodeshasapositiveflowvalueintheupdatedoriginalgraphofeachiteration.
Thus,itisobviousthatintheresultingoriginalgraphofeachiteration(includingthefinalresultgivenbythefinaliteration),onlyoneedgeof(𝑎,𝑏)and(𝑏,𝑎)isusedtoholdtheflow.
Giventwonodes𝑠and𝑡intheequivalentdirectedgraphcorre-spondingtotheundirectedgraph,when𝑓̂(𝑠,𝑡)isdeployedinthegraph,𝑓̂(𝑡,𝑠)withthesamemax-flowvaluecanbedeployedinthegraphatthesametime.
Accordingtoitem
(2)
above,thereverseedgeofeachpositive-flowedgeisnotusedinthemax-flowresult.Itisobviousthatfor
eachedge(𝑎,𝑏)withpositiveflowvalue𝑓(𝑎,𝑏)inthemax-flow
Itisclearthat𝑓𝑖≤𝑓̂(𝐵,𝐵)and𝑓𝑖≤𝑓̂(𝐵,𝐵)inanymax-flow
1 12 2 21
resultbetween𝑠and𝑡,bymovingtheflowinedge(𝑎,𝑏)toedge
(𝑏,𝑎)withsameflowvalue(whichisequivalenttoreversingtheinandoutflowsofeachnode),theper-nodeflowconstraints
resultbetween𝑠and𝑡outsidetheTBG.Becauseanydeployed
flowsmustbefeasibletoreachthetargetnode𝑡inthemax-flowresult.Orif𝑓𝑖>𝑓̂(𝐵,𝐵)anditmustflowoutofTBGthrough𝐵2,
̂ 1 12
inEq.(
1
)alsoholdanditwillgeneratethemax-flowresult𝑓(𝑡,𝑠)
withsamemax-flowvaluefromnodes𝑡to𝑠.Andsinceeachin-edgeflowof𝑓̂(𝑡,𝑠)sitsatadifferentedgefromitscounterpartin
𝑓̂(𝑠,𝑡),𝑓̂(𝑡,𝑠)and𝑓̂(𝑠,𝑡)onlysharenodesandthustheirflowswillnotaffecteachother,itisclearthat𝑓̂(𝑠,𝑡)and𝑓̂(𝑡,𝑠)canbedeployedinthegraphatthesametime.
DenotetheboundarynodeofthegivenTBGas𝐵1and𝐵2.Denotethemax-flowvaluebetween𝐵1and𝐵2as𝑓̂𝑇𝐵𝐺,the
whichwillgenerateanin-edgeflowdistributionwiththetotal
flowvaluebetween𝐵1and𝐵2insideTBGlargerthan𝑓̂(𝐵1,𝐵2)
and𝑓̂(𝐵2,𝐵1),whichcontradictsthemax-flowdefinition.
Asaresult,iftheTBGiscontractedastheundirectededge(or
directededgesinbothdirections)between𝐵1and𝐵2withthemax-flowvalue𝑓̂(𝐵1,𝐵2)==𝑓̂(𝐵2,𝐵1),theflowsinto𝐵1or𝐵2inthemax-flowresultcanbekeptunchangedandthecapacitylimitis
met,sotheotherpartsofthemax-flowresultarekeptthesame.
̂𝑇𝐵𝐺
(𝐵1,𝐵2)
Inaddition,themax-flowvaluebetween𝑠and𝑡willnotincrease
𝑓(𝐵2,𝐵1)withthesamemax-flowvaluecanbedeployedinthe
TBGatthesametime.
Thisisobviousfromtheitem
(3)
above.
Denotethemax-flowfrom𝑠to𝑡as𝑓̂(𝑠,𝑡),giventwonodes𝑠and𝑡intheequivalentdirectedgraphcorrespondingtotheundirectedgraph,itisshownbelowthatthereisnocycleflowpathinthe
asthecontractionwillnotgenerateanynewaugmentingpathbetween𝑠and𝑡.Ifthebottleneckedgetofindamoreaug-mentingpathisnotinsidetheTBG,TBGcontractionwillkeeptheotherpartofthemax-flowresultandthebottleneckedgeunchanged,andthusnonewaugmentingpathwillbegenerated.IfthebottleneckedgeisinsidetheTBG,theremustbe𝑓𝑖==
max-flowresults.Thatis,intheoriginalgraphthedirectededge
𝑓̂
1
or𝑓2==𝑓̂
(𝐵1,𝐵2) 1
(𝐵2,𝐵1)(orTBGcanindependentlyadjustthe
withpositiveflowwillnotformacycle.
Supposethatwhenasimplepathbetween𝑠and𝑡(i.e.,𝑝)isfoundintheresidualgraphinoneiteration,therewillbeacycleflowpathintheupdatedoriginalgraph.Supposeintheoriginalgraphthepathsegmentcontainingtheoverlappednodesinthelooppathandthesimplepathisboundedbynodes𝑎and𝑏.Itisclearthatthereareatleasttwodirectedpathsinreversedirectionswithpositiveflowbetween𝑎and𝑏intheoriginalgraph,anddenotethemas𝑝𝑜(𝑎,𝑏)and𝑝𝑜(𝑏,𝑎)andsuppose𝑝𝑜(𝑎,𝑏)asthepathsegmentinthefoundsimplepathintheresidualgraph,whichisalsothesimplepathintheoriginalgraph.So,beforethesimplepath𝑝isfound,𝑝𝑜(𝑏,𝑎)alreadyexistsintheoriginalgraphandthereiscertainlyasimplepathwithresidualcapacitiesbetween𝑎and𝑏intheresidualgraph(i.e.,𝑝(𝑎,𝑏)).Andnotalledgeshaveresidualcapacityinthe𝑝𝑜(𝑎,𝑏)appliedintheresidualgraphortherewillbeacycleflowpathbeforethesimplepath
𝑝.Thatis,givenapath𝑝(𝑎,𝑏)withresidualcapacitiesinallitsedges,thealgorithmchoosesthepath𝑝𝑜(𝑎,𝑏)withsomeedgesthatdonothaveresidualcapacitiesintheresidualgraph,whichcontradictsthefactthatintheaugmentingpath-basedmethod,residualcapacitywillbeusedfirst.Thus,inthemax-flowresultoftheoriginalgraph,thedirectededgewithpositiveflowwillnotformacycle.
Inthemax-flowresultbetweenanynodepair,𝑠and𝑡outsidea
TBGwithBN𝐵1and𝐵2,representtherespectiveflowvalueintotheTBGthrough𝐵1and𝐵2as𝑓𝑖and𝑓𝑖,onlyoneof𝑓𝑖and𝑓𝑖
internalflowtoallowmoreflowthroughtheTBG),sobykeepingtheedgecapacityaftercontractionas𝑓̂(𝐵1,𝐵2),thecontractionwillnotgenerateanewaugmentingpath.
Asaresult,TBGcontractionwillmaintainthemax-flowresultbeforecontractionandwillnotgenerateanewaugmentingpathtochangethemax-flowresult.
Thelemmaisproved.
Asaresult,formax-flowcalculationbetweenanynodepairoutsidetheTBG,theTBGcanbetreatedasanedgebetweenitsBNs.AndforTBGsthatdonotcontainthegivennodepair,theycanbecontractedonebyonewhilethemax-flowvalueofthenodepairremainsun-changedaftereachcontraction.Thatis,allTBGsthatdonotcontainthegivennodepaircanbecontractedatthesametime.
ItisalsofoundthatfortheTBGinsideaBCC,theremainingportionoftheBCCafterremovingtheTBGisstillaTBG,whichisdefinedastheinverseTBGoftheoriginalTBG:
Lemma3.7.InaBCCwithnodeset𝑉̂andedgeset𝐸̂,givenanyTBGinsideitwithnodeset𝑉′⊂𝑉̂andedgeset𝐸′⊂𝐸̂withthesetoftwoboundarynodes𝑉𝐵.TheBCCportionoutsidetheTBGwithnodeset
𝑉′′=𝑉̂−𝑉′+𝑉𝐵andedgeset𝐸′′=𝐸̂−𝐸′isstillaTBGwiththesameBNs.
Proof.BecausethereareatleasttwopathswithoutdisjointingnodesbetweenanytwonodesinaBCC,neighborsaandbofboundarynodes
isgreaterthan0.
1 2 1
2 𝐵1and𝐵2outsidetheTBGhavepathsthatdonotpassthrough𝐵1and
Thus,ifboth𝑓𝑖and𝑓𝑖arenotzerointhemax-flowresult,since
𝐵2.Byadding𝐵1and𝐵2andtheiredgeswiththerespectiveneighbors
1 2 𝑎and𝑏,itwillgenerateapathbetween𝐵1and𝐵2intheBCCportion
theflowintotheTBGfrom𝐵2canonlyexitTBGthrough𝐵1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年广东省深圳市中考英语押题试卷(二)
- 上海市市辖区(2024年-2025年小学五年级语文)统编版竞赛题((上下)学期)试卷及答案
- 上海市县(2024年-2025年小学五年级语文)统编版期末考试(下学期)试卷及答案
- 海南省陵水黎族自治县2022-2023学年四年级上学期期中英语试题
- 卫生监督机构公益目标评估指标调查表
- 【初中物理】光现象+单元练习-+2024-2025学年人教版物理八年级上册
- 河北省保定市定州市2024-2025学年高二上学期11月期中物理试题(无答案)
- 职业学院轮机工程技术专业人才培养方案
- 厨房用瓮非贵金属制市场需求与消费特点分析
- 戒烟用药物制剂市场需求与消费特点分析
- 施检表灌砂法测定压实度试验记录表
- 二上【教学】《我们不乱扔》
- 《GMP实务教程》 完整全套教学课件 项目1-14 GMP基础知识-药品生产行政检查
- (完整word)绝缘子试验报告
- 《中国梦我的梦》课件
- 肾内科疑难病例讨论慢性肾脏病5期
- 认识烘焙食品课件
- 中医病名对照表
- 创业基础-中南财经政法大学中国大学mooc课后章节答案期末考试题库2023年
- 大数据与数学研究课件
- 汽车检测站工作计划(共4篇)
评论
0/150
提交评论