数学专业毕业论文选题_第1页
数学专业毕业论文选题_第2页
数学专业毕业论文选题_第3页
数学专业毕业论文选题_第4页
数学专业毕业论文选题_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第4页共5页数学专业毕业论文选题一、计算机1.数据库图书查询管理设计2.最优轧板成品率的VFP6编程3.基于VFP6的通讯录设计4.基于Mathematicn的课件设计5.用Mathematica帮助理解中数问题6.基于VFP6的成绩统计7.实用的网上共享数据库录入程序8.通用答卷统计系统的总体设计方案9.通用答卷统计系统的录入编程10.通4用答卷统计系统的统计编程11.通用答卷统计系统的报表设计12.通用答卷统计系统的帮助系统设计二、常微分方程1.一阶常微分方程的奇解的求法(或判定)微分方程中的补助函数3.关于奇解的运用4.曲线的包络与微分方程的奇解5.用微分方程定义初等函数6.常微分方程唯一性定理及其应用7.求一阶显微分方程积分因子的方法8.二阶线性微分方程另几种可积类型9.满足某些条件黎卡提方程的解法10.一阶常微分方程方向场与积分曲线11.变换法在求解常微分方程中用应用12.通解中任意常数C的确定及意义13.三阶常系数线笥齐次方程的求解14.三维线性系统15.二阶常系数线性非齐次方程新解法探讨16.非线性方程的特殊解法17.可积组合法与低阶方程(方程组)三、数学分析1.多元函数连续、偏导数存在及可微之间的关系费尔马最后定理初探3.求极值的若干方法4.关于极值与最大值问题5.求函数极值应注意的几个问题6.n元一次不定方程整数解的矩阵解法7.导数的运用8.泰勒公式的几种证明法及其应用9.利用一元函数微分性质证明超越不等式10.利用柯西——施瓦兹不等式求极值11.函数列的各种收敛性及其相互关系12.复合函数的连续性初探13.关于集合的映射、等价关系与分类14.谈某些递推数列通项公式的求法15.用特征方程求线性分式递推数列的通项16.谈用生成函数法求递归序列通项17.高级等差数列18.组合恒等式证明的几种方法19.斯特林数列的通项公式20.一个递归数列的极限21.关于隶属函数的一些思考22.多元复合函数微分之难点及其注意的问题23.由数列递推公式求通项的若干方法24.定积分在物理学中的应用25.一个极限不等式的证明有及其应用26.可展曲面的几何特征27.再谈微分中值公式的应用28.求极限的若干方法点滴29.试用达布和理论探讨函数可积与连续的关系30.不定积分中的辅助积分法点滴四、复变函数1.谈残数的求法2.利用复数模的性质证解某些问题3.利用复函数理论解决中学复数中的有关问题谈复数理论在中学教学中的运用5.谈解析函数五、实变函数可测函数的等价定义康托分集的几个性质3.可测函数的收敛性14.计算机辅助数学教学初探15.在数学课堂教学中运用情感教育16.在数学教学中恰当进行数学实验17.数学语言、思维及其教学18.在平面几何教学中渗透为类比、猜想、归纳推理的思想方法19.试论数学学习中的迁移20.数学例题教学应遵循的原则十一、初等数学1.数学证题中的等价变换与充要条件2.关于充要条件的理解和运用3.参数方程的运用4.极坐标方程的运用5.怎样证明条件恒等式6.不等式证明方法7.极值与不等式8.证明不等式的一种重要方法9.谈中学二次函数解析式的求法10.二元二次方程组的解11.谈数列求和的若干12.谈立体几何问题转化为平面几何问题的方法13.求异面直线距离的若干方法14.利用对称性求平面几何中的极值15.浅谈平面几何证明中的辅助线16.浅谈对称性在中学数学解题中的运用17.浅谈韦达定理的运用18.论分式方程的增根19.数列通项公式的几种推导方法20.函数的周期及其应用21.数学归纳法的解题技巧22.等价关系的几种判定方法23.数学归纳法及其推广和变形24.浅谈用几何方法证明不等式25.浅谈初等数学中的不等式与极值26.几个不等式的推广27.函数的概念

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论