2022版高考数学一轮复习第三章导数及其应用3.2利用导数研究函数的单调性课件理北师大版_第1页
2022版高考数学一轮复习第三章导数及其应用3.2利用导数研究函数的单调性课件理北师大版_第2页
2022版高考数学一轮复习第三章导数及其应用3.2利用导数研究函数的单调性课件理北师大版_第3页
2022版高考数学一轮复习第三章导数及其应用3.2利用导数研究函数的单调性课件理北师大版_第4页
2022版高考数学一轮复习第三章导数及其应用3.2利用导数研究函数的单调性课件理北师大版_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二节利用导数研究函数的单调性第一页,编辑于星期六:四点十一分。内容索引必备知识·自主学习核心考点·精准研析核心素养·微专题核心素养测评第二页,编辑于星期六:四点十一分。第三页,编辑于星期六:四点十一分。【教材·知识梳理】1.利用导数研究函数的单调性(1)前提条件:函数f(x)在(a,b)内可导(2)导数与函数单调性的关系f′(x)>0f(x)在(a,b)上为_______.f′(x)<0f(x)在(a,b)上为_______.f′(x)=0f(x)在(a,b)上为_________.增函数减函数常数函数第四页,编辑于星期六:四点十一分。2.由导数求单调区间的步骤第五页,编辑于星期六:四点十一分。【知识点辨析】(正确的打“√”,错误的打“×”)(1)在(a,b)内f′(x)≤0,且f′(x)=0的根有有限个,则f(x)在(a,b)内是减函数. (

)(2)若函数f(x)在定义域上都有f′(x)<0,则函数f(x)在定义域上一定单调递减.(

)(3)已知函数f(x)在区间[a,b]上单调递增,则f′(x)>0恒成立. (

)第六页,编辑于星期六:四点十一分。提示:(1)√.(2)×.不一定,如函数y=的导函数y′=-<0恒成立,但是函数y=的图像不是恒下降的.(3)×.不一定,如y=x3在[-1,3]上单调递增,但是y′=3x2在x=0处的值为0.第七页,编辑于星期六:四点十一分。序号易错警示典题索引1忽视定义域优先的原则考点一、T1,22分类讨论时分类标准出错考点二、典例3已知单调性求参数的问题时,所列不等式是否取等号出错考点三、角度3【易错点索引】第八页,编辑于星期六:四点十一分。【教材·基础自测】1.(选修2-2P59练习T1(2)改编)函数f(x)=(x-3)ex的递增区间是 (

)A.(-∞,2)

B.(0,3)C.(1,4)

D.(2,+∞)第九页,编辑于星期六:四点十一分。【解析】选D.函数f(x)=(x-3)ex的导数为f′(x)=[(x-3)ex]′=ex+(x-3)ex=(x-2)ex.由函数导数与函数单调性的关系,得当f′(x)>0时,函数f(x)是增加的,此时由不等式f′(x)=(x-2)ex>0,解得x>2.第十页,编辑于星期六:四点十一分。2.(选修2-2P62A组T1(3)改编)函数f(x)=(a>0)的递增区间是 (

)A.(-∞,-1) B.(-1,1)C.(1,+∞) D.(-∞,-1)或(1,+∞)【解析】选B.函数f(x)的定义域为R,f′(x)==,由于a>0,要使f′(x)>0,只需(1-x)(1+x)>0,解得-1<x<1.第十一页,编辑于星期六:四点十一分。3.(选修2-2P58例1改编)利用导数讨论指数函数f(x)=ax(a>0,a≠1)的单调性.【解析】指数函数f(x)=ax的定义域为R,因为f′(x)=axlna,对于任意x∈R,总有ax>0,所以当0<a<1时,lna<0,f′(x)<0,函数在R上单调递减,第十二页,编辑于星期六:四点十一分。当a>1时,lna>0,f′(x)>0,函数在R上单调递增.综上,当0<a<1时,函数f(x)=ax单调递减,当a>1时,函数f(x)=ax单调递增.第十三页,编辑于星期六:四点十一分。

解题新思维构造法的应用

【结论】构建新函数解答比较大小和不等式问题分析已知条件的特点构造新的函数,对新函数求导确定其单调性,再由单调性进行大小的比较.第十四页,编辑于星期六:四点十一分。典例(2020·凉山模拟)若0<x1<x2<a都有x2lnx1-x1lnx2<x1-x2成立,则a的最大值为 (

)

A. B.1 C.e D.2e【解析】选B.原不等式可转化为构造函数f(x)=,f′(x)=,故函数在(0,1)上导数大于零,单调递增,在(1,+∞)上导数小于零,单调递减.由于x1<x2且f(x1)<f(x2),故x1,x2在区间(0,1)上,故a的最大值为1.第十五页,编辑于星期六:四点十一分。【迁移应用】已知y=f(x)是定义在R上的奇函数,且当x<0时不等式f(x)+xf′(x)<0成立,若a=30.3·f(30.3),b=logπ3·f(logπ3),c=,则a,b,c的大小关系是 (

)A.a>b>c

B.c>b>aC.a>c>b

D.c>a>b第十六页,编辑于星期六:四点十一分。【解析】选D.令h(x)=xf(x),因为函数y=f(x)以及函数y=x是R上的奇函数,所以h(x)=xf(x)是R上的偶函数.又因为当x<0时,h′(x)=f(x)+xf′(x)<0,所以函数h(x)在x∈(-∞,0)时单调递减,所以h(x)在x∈(0,+∞)时单调递增.因为a=30.3·f(30.3)=h(30.3),b=logπ3·f(logπ3)=h(logπ3),c=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论