高考数学一轮复习全程复习构想·数学(理)【统考版】课时作业41 空间点、直线、平面之间的位置关系练习_第1页
高考数学一轮复习全程复习构想·数学(理)【统考版】课时作业41 空间点、直线、平面之间的位置关系练习_第2页
高考数学一轮复习全程复习构想·数学(理)【统考版】课时作业41 空间点、直线、平面之间的位置关系练习_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时作业41空间点、直线、平面之间的位置关系[基础落实练]一、选择题1.已知命题p:a,b为异面直线,命题q:直线a,b不相交,则p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.如图所示,ABCD­A1B1C1D1是正方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面3.在四面体ABCD中,BC=BD=CD=2,AB=2eq\r(3),N是棱AD的中点,CN=eq\r(3),则异面直线AB与CN所成的角为()A.eq\f(π,3)B.eq\f(π,6)C.eq\f(π,4)D.eq\f(π,2)4.a,b,c是两两不同的三条直线,下面四个命题中,真命题是()A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c5.[2023·哈尔滨市第六中学高三月考]已知在正四面体ABCD中,点E为棱AD的中点,则异面直线CE与BD所成角的余弦值为()A.eq\f(\r(3),6)B.eq\f(5,6)C.eq\f(1,3)D.eq\f(\r(3),3)二、填空题6.已知棱长为a的正方体ABCD­A′B′C′D′中,M,N分别为CD,AD的中点,则MN与A′C′的位置关系是________.7.已知下列说法:①若两个平面α∥β,a⊂α,b⊂β,则a∥b②若两个平面α∥β,a⊂α,b⊂β,则a与b是异面直线;③若两个平面α∥β,a⊂α,b⊂β,则a与b一定不相交;④若两个平面α∥β,a⊂α,b⊂β,则a与b平行或异面;⑤若两个平面α∩β=b,a⊂α,则a与β一定相交.其中正确的序号是________(将你认为正确的序号都填上).8.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.[素养提升练]9.如图所示,直三棱柱ABC­A1B1C1中,∠BCA=60°,M,N分别是A1C1,CC1的中点,BC=CA=CC1,则BN与AM所成角的余弦值为()A.eq\f(3,5)B.eq\f(4,5)C.eq\f(2,3)D.eq\f(3,4)10.如图,已知圆柱的上底面圆心为O,高和底面圆的半径相等,AB是底面圆的一条直径,点C为底面圆周上一点,且∠ABC=45°,则异面直线AC与OB所成角的余弦值为________.11.[2023·广东广州质检]如图是正四面体(各面均为正三角形)的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点.在这个正四面体中:①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.12.如图,在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E,F,G,H四点共面;(2)设EG与FH交于点P,求证:P,A,C三点共线.13.[2022

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论