版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024WhitePaper
PoweringIntelligence
AnalyzingArtificialIntelligenceandDataCenterEnergyConsumption
2|PoweringIntelligenceMay2024
EXECUTIVESUMMARY
KeyMessages
•IntheUnitedStates,poweringdatacenters,providingcleanenergyfor
manufacturing,supportingindustrialonshoring,andelectrifyingtransporta-tionaredrivingrenewedelectricloadgrowth.Clustersofnew,largepoint
loadsaretestingtheabilityofelectriccompaniestokeeppace.
•Datacentersareoneofthefastestgrowingindustriesworldwide.Between
2017and2021,electricityusedbyMeta,Amazon,Microsoft,andGoogle—themainprovidersofcommerciallyavailablecloudcomputinganddigitalservices—morethandoubled.
•Afundamentaluncertaintyinprojectingdatacenterloadgrowthcomesfromthebroademergenceofartificialintelligence(AI)technologiesinbusiness
anddailylife—punctuatedbytheexplosionintopublicconsciousnessofgen-erativeAImodels,suchasOpenAI’sChatGPT,releasedinNovember2022.
WhileAIapplicationsareestimatedtouseonly10%–20%ofdatacenterelectricitytoday,thatpercentageisgrowingrapidly.
•AImodelsaretypicallymuchmoreenergy-intensivethanthedataretrieval,streaming,andcommunicationsapplicationsthatdrovedatacentergrowthoverthepasttwodecades.At2.9watt-hoursperChatGPTrequest,AIque-
riesareestimatedtorequire10xtheelectricityoftraditionalGooglequeries,whichuseabout0.3watt-hourseach;andemerging,computation-intensivecapabilitiessuchasimage,audio,andvideogenerationhavenoprecedent.
•Toprovideanearlyassessmentofpotentialdatacenterloadgrowthatthenationallevel,EPRIhasdevelopedlow,moderate,high,andhighergrowth
scenariosfordatacenterloadsfrom2023to2030.Datacentersgrowto
consume4.6%to9.1%ofU.S.electricitygenerationannuallyby2030versusanestimated4%today.
•Whilethenational-levelgrowthestimatesaresignificant,itisevenmore
strikingtoconsiderthegeographicconcentrationoftheindustryandthe
localchallengesthisgrowthcancreate.Today,fifteenstatesaccountfor80%ofthenationaldatacenterload,withdatacentersestimatedtocompriseaquarterofVirginia’selectricloadin2023.Concentrationofdemandisalso
evidentglobally,withdatacentersprojectedtomakeupalmostone-thirdofIreland’stotalelectricitydemandby2026.
•WiththeshifttocloudcomputingandAI,newdatacentersaregrowingin
size.Itisnotunusualtoseenewcentersbeingbuiltwithcapacitiesfrom100to1000megawatts—roughlyequivalenttotheloadfrom80,000to800,000homes.Connectionleadtimesofonetotwoyears,demandsforhighly
reliablepower,andrequestsforpowerfromnew,non-emittinggenerationsourcescancreatelocalandregionalelectricsupplychallenges.
•EPRIhighlightsthreeessentialstrategiestosupportrapiddatacenterexpan-sion:
1.Datacenterefficiencyimprovementsandincreasedflexibility.
2.Closecoordinationbetweendatacenterdevelopersandelectriccom-
paniesregardingdatacenterpowerneeds,timing,andflexibility,aswellaselectricsuppliesanddeliveryconstraints.
3.Bettermodelingtoolstoplanthe5–10+yeargridinvestmentsneeded
toanticipateandaccommodatedatacentergrowthwithoutnegatively
impactingothercustomersandtoidentifystrategiesformaintaininggridreliabilitywiththeselarge,noveldemands.
3|PoweringIntelligenceMay2024
TABLEOFCONTENTS
EXECUTIVESUMMARY 2
KeyMessages 2
PotentialImpactsofArtificialIntelligenceonDataCenterLoadGrowth 4
EPRIU.S.DataCenterLoadProjections 4
DataCenterPowerDemandsAreConcentratedinaFewRegions 5
ARoadmaptoSupportRapidDataCenterExpansion 6
Introduction 7
ResearchQuestions 7
DataCentersintheUnitedStates 7
DataCenters’PrimaryElectricity-ConsumingHardwareandEquipment 9
AIandDataCenterPowerConsumptionInsights 10
ImmenseVolumesofDataareBeingProcessedDaily 10
HistoryofEnergyEfficiencyintheDataCenterIndustry 11
UnevenGeographicDistributionCreatesImbalanceinDataCenterLoad 12
AIImplicationsforPowerConsumption 14
ChatGPTandOtherLargeLanguageModels(LLMs) 15
ForecastingDataCenterLoadGrowthto2030 17
FourScenariosBasedonHistoricalData,ExpertInsights,andCurrentTrends 17
EnergyEfficiency,LoadManagementandCleanElectricitySupply 18
Energy-EfficientTrainingAlgorithms 18
Energy-EfficientHardware 19
Energy-EfficientCoolingTechnologies 19
ScalableCleanEnergyUse 20
MonitoringandAnalytics 20
ReducingDataCenters’EnvironmentalFootprint 21
ActionstoSupportRapidDataCenterExpansion 21
ImproveDataCenterOperationalEfficiencyandFlexibility 22
IncreaseCollaborationthroughaSharedEnergyEconomyModelforSustainableDataCenters 22
BetterAnticipateFuturePointLoadGrowththroughImprovedForecastingandModeling 23
AppendixA:State-SpecificScenarios 24
ProjectedDataCenterLoadScenariosforTop15States 24
RegionalDifferencesinDataCenterCapacitiesbyMetropolitanArea 27
ProjectionsofPotentialPowerConsumptionfor44States 28
AppendixB:InsightsIntotheEnergyUseofAIModels 29
References 31
4|PoweringIntelligenceMay2024
PotentialImpactsofArtificialIntelligenceonDataCenterLoadGrowth
Datacenteroperationisoneofthefastestgrowingindus-
triesworldwide.TheInternationalEnergyAgencyrecentlyprojectedthatglobaldatacenterelectricitydemand
willmorethandoubleby2026.IntheUnitedStates,thenationaloutlookcouldresembletheglobaloutlook,butishighlyuncertain.
Onekeyuncertaintythatcouldchangethetrajectoryof
datacenterloadgrowthistheuseofgenerativeAImodels.Bothpublicandcorporateimaginationsweretriggeredby
thereleaseofOpenAI’sChatGPTonNovember30,2022.Ev-idenceabouthowwidelythesetoolswillbeusedandhowmuchtheywillchangecomputationalneedsisjuststartingtoemerge.Theseearlyapplicationswereestimatedtore-
quireabouttentimestheelectricity—from0.3watt-hoursforatraditionalGooglesearchto2.9watt-hoursforaChat-GPTquery—torespondtouserqueries.Creationoforiginalmusic,photos,andvideosbaseduponuserpromptsand
otheremergingAIapplicationscouldrequiremuchmorepower.With5.3billionglobalinternetusers,widespreadadoptionofthesetoolscouldpotentiallyleadtoastep
changeinpowerrequirements.Ontheotherhand,his-
toryhasshownthatdemandforincreasedprocessinghaslargelybeenoffsetbydatacenterefficiencygains.
EPRIU.S.DataCenterLoadProjections
Drawingonpublicinformationaboutexistingdatacenters,publicestimatesofindustrygrowth,andrecentelectricity
demandforecastsbyindustryexperts,EPRIpreparedfour
scenariosofpotentialelectricityconsumptioninU.S.data
centersduringtheperiodfrom2023to2030(FigureES-1).Thebluelineinthefigure,runningfrom2000to2020,
traceshistoricaldatacenterelectricityconsumptionesti-
mates.From2000to2010,datacenterloadgrewascentersexpandedacrossthecountrytosupporttheemerging
internet.From2010to2017,despitecontinuedgrowthincomputingdemandsanddatastoragethisloadgrowthflat-tenedduetoefficiencygainsandthereplacementofsmall,relativelyinefficientcorporatedatacenterswithlarge,
cloudcomputingfacilities.Inrecentyears,loadgrowthhaslikelyaccelerated,drivenbyemergingAIapplicationsandCOVID-eraincreasesindemandforserviceslikestreamingandvideoconferencing.Thelightblueareahighlightsun-certaintyinarangeofdatacenterelectricityconsumptionestimatesfor2021to2023.Coloredbandsshowthefour
projections,whichcombineestimatesofincreaseddata
processingneedswithassumptionsaboutefficiencygains.Thewidthsofthesebandscarryforwardtheuncertaintyaboutthe2023startingloadlevel:
•Lowgrowth—3.7%annualloadgrowthbasedonaStatistaprojectionofdatacenterfinancialgrowthis-suedpriortothereleaseofChatGPT.
ANNUAL
%OF2030ELECTRICIT
Y
LowgrowthModerategro
4.6%50%
Highgrowt
h10%
.
6.8%
Max
Averagehist
oricaldata
Min
20002005201020152020
20252030
SCENARIO
GROWTHRA
TECONSUMPTI
ON
600
500
ElectricityConsumption(TWh/y)
wth5%
3.7%
400
Highergrow
9.1%
th15%
300
200
100
0
FigureES-1.ProjectionsofpotentialelectricityconsumptionbyU.S.datacenters:2023–2030.%of2030electricityconsumptionprojectionsassumethatallother(non-datacenter)loadincreasesat1%annually.
5|PoweringIntelligenceMay2024
•Moderategrowth—5%annualloadgrowthbasedonanexpertassessmentcommissionedbyEPRI.
•Highgrowth—10%annualloadgrowthconsistentwithbothaMcKinseyestimateandanotherexpertassess-
mentcommissionedbyEPRIinsummer2023.
•Highergrowth—15%annualgrowthbasedupona
commissionedexpertassessmentconsistentwithrapidexpansionofAIapplicationsandlimitedefficiency
gains.
Theestimatesofdatacenters’shareoftotalU.S.electricityconsumptionin2030—9.1%,6.8%,5.0%,and4.6%—as-
sumethatallotherloadsincreaseat1%peryear.Data
centersaccountedforabout4%ofthetotalloadin2023(averageestimate).
DataCenterPowerDemandsAreConcentratedinaFewRegions
Fifteenstatesaccountedforanestimated80%ofthe
nationaldatacenterloadin2023.Rankedfromhighesttolowest,theyareVirginia,Texas,California,Illinois,Oregon,Arizona,Iowa,Georgia,Washington,Pennsylvania,New
York,NewJersey,Nebraska,NorthDakota,andNevada.
Concentrationofdemandisalsoevidentglobally,withtheInternationalEnergyAgencyrecentlyprojectingthatdatacentersinIrelandcouldaccountforalmostone-thirdof
Ireland’stotalelectricitydemandby2026.
ThemapinFigureES-2showstheeffectin2030ofapplyingtheannualU.S.datacentergrowthrates(averagedacross
thefourscenarios)toprojectstate-levelloadsagainsta
backdropof1%annualgrowthinotherloads.Withevenlyspreadgrowth,thedatacentershareofloadinVirginiain-creasestoalmost50%inthehighergrowthscenarioandto36%whenaveragedacrossthefourscenarios.Thesharesinotherstatesvarywidelywithfiveotherstatesprojectedtoapproach20%ormoreofelectricitydemandunderthese
simplifiedassumptions.Inreality,loadgrowthisunlikely
tobespreadevenly.Datacentersfavorsiteswhereinter-
netconnectionsarestrong;whereelectricityprices,land
costs,anddisruptiveeventsarelow;whereskilledlaboris
available;nearpopulationcentersandusers;andwherethecenterscandevelopbackuppowertoensurepowersupply(usuallynaturalgasordieselgenerators).Theadditional
l
I
\
/
2030DataCenter%ofStateElectricityConsumption
0–5%5–10%10–15%15–20%20+%
FigureES-2.2030projecteddatacentershareofelectricityconsumption(assumesaverageofthefourgrowthscenariosandthatnon-datacenterloadsgrowat1%annually)[4,8,9]
6|PoweringIntelligenceMay2024
requirementofsomedevelopersfornew,cleanelectricitygenerationsourcesaddstothechallengeofdevelopinganddeliveringthisnewgeneration.
ARoadmaptoSupportRapidDataCenterExpansion
Themostseriouschallengestodatacenterexpansionare
localandregionalandresultfromthescaleofthecenters
themselvesandmismatchesininfrastructuretiming.A
typicalnewdatacenterof100to1000megawattsrepre-
sentsaloadequaltothatofanewneighborhoodof80,000to800,000averagehomes.Whileneighborhoodsrequire
manyyearstoplanandbuild,datacenterscanbedevel-
opedandconnectedtotheinternetinonetotwoyears.
Newtransmission,incontrast,takesfourormoreyearsto
plan,permit,andconstruct.Anddevelopingandconnectingnewgenerationcanalsotakeyears.
EPRIhighlightsthreeessentialstrategiestosupportrapiddatacenterexpansion.Thesestrategiesemphasizein-
creasedcollaborationbetweendatacenterdevelopersandelectriccompanies.
1.Improvedatacenteroperationalefficiencyandflex-
ibility.Althoughgainsindatacenteroperationalef-
ficiencyhaveplateauedinrecentyears,thereareclearopportunitiesforfurtherimprovement,includingmoreefficientIThardware;lowerelectricityuseforcooling,lighting,andsecurity;andmoreefficientAIdevelop-
mentanddeploymentstrategies.Effortstoincreasebothtemporalandspatial(i.e.,spreadingcompute
geographically)flexibilityarecriticaltohelpingaccom-modatethesenewloads.
2.Increasecollaborationbetweendatacenterdevel-
opersandelectriccompanies.Developingadeeper
understandingofdatacenterpowerneeds,timing,andpotentialflexibilities—whileassessinghowtheymatchavailableelectricsuppliesanddeliveryconstraints—cancreateworkablesolutionsforall.Enabledbytechnol-
ogyandsupportingpolicies,datacenterbackupgen-
erators,poweredbycleanfuels,couldsupportamorereliablegridwhilereducingthecostofdatacenterop-eration.Shiftingthedatacenter-gridrelationshipfromthecurrent“passiveload”modeltoacollaborative
“sharedenergyeconomy”—withgridresourcespower-ingdatacentersanddatacenterbackupresources
contributingtogridreliabilityandflexibility—couldnotonlyhelpelectriccompaniescontendwiththeexplo-
sivegrowthofAIbutalsocontributetoaffordabilityandreliabilityforallelectricityusers.
3.Improvepointloadforecastingtobetteranticipate
futurepointloadgrowthandmodelingoftransient
systembehaviortomaintainreliability.Forecastsneedtomakebetterprojectionsdescribingnewpointload
locations,magnitudes,andtimingalongsidebetter
techniquesformakingdecisions—tobuildornotbuildlonglead-timeinfrastructure—whilefacingtheeco-
nomic,regulatory,andpoliticaluncertaintyassociatedwithsitingtheselargepointloads.Also,real-timemod-elingofdatacenteroperationalcharacteristicsinan
increasinglyinverter-basedgridisneededtomaintainreliability.
7|PoweringIntelligenceMay2024
INTRODUCTION
ResearchQuestions
Asthenumberandsizeofdatacentersexpandtosupportcontinuedgrowthindataprocessing,internettraffic,andrapidexpansioninartificialintelligence(AI)applications,somecriticalquestionsemerge:
•Howrapidlycanweexpectdatacenterstoexpand,andhowdoestherapidgrowthinAIchangetheirpower
demands?
•Whatistheimpactofthesedevelopmentsonelectricloadandresourceadequacy?
•Whatimplicationsdothesetrendshaveforfutureelec-tricityinfrastructureplanning?
•Howcanthedatacenterandelectricutilityindustriesworktogethertosupportrapiddatacenterexpansion?
DataCentersintheUnitedStates
AsofMarch2024,therewereapproximately10,655datacentersglobally;halfofthem,5,381,wereintheUnitedStates.Justoverthreeyearsago,inJanuary2021,therewereapproximately8,000datacenters,withaboutone-thirdofthemintheUnitedStates[1].
Theconstructionofnewdatacentersisacceleratingata
rapidpace,largelydrivenbydemandforAI-poweredtaskssuchasspeechrecognition,tailoreddiagnostics,logistics,
internetofthings(IoT),andgenerativeAI.TheexpansionofinterestingenerativeAIisparticularlynotableduetothe
overnightpopularityofChatGPT,releasedonNovember30,2022,markingthepublic-facingstartofatechnologyrace.
Datacentersvarysignificantlyindesignandpurposeandaregenerallygroupedintotwocategories,smallorlarge
scale.Small-scaledatacenters,representingabout10%ofU.S.datacenterload[2],typicallycatertolocalizedopera-tionsandservicesmallbusinesses,governmentfacilities,
orspecificdepartmentalneedswithinlargercorporations.Theyincludeserverrooms/closetsembeddedinbuildingsand“edgedatacenters,”whicharestrategicallylocatedontheouteredgesofnetworkstobringcomputingcapabilitiesclosertouserswhoaregeographicallydistantfromlarge
clouddatacenters[3].Thoughtheelectricitydemandsofeachinstallationarerelativelymodest—500kilowatts(kW)to2megawatts(MW)—theyaccountforroughlyhalfofallservers[3].Marketresearchanalystshaveprojectedthe
globaledgedatacentermarkettogrowatacompoundan-nualgrowthrate(CAGR)of22.1%to2030[4],highlightingtherisingimportanceofsmall-scaleandedgedatacentersindigitalinfrastructure.
Large-scalecommercialdatacentersaredesignedtoserveextensiveoperationsandoftenservemultiplebusinesses
orevenentireindustries.Thesedatacentersseekproximitytocustomersandaskilledworkforceandcanbenefitfromlowerlandcosts,propertytaxes,laborrates,energyprices,andriskofsevereweatherorseismicactivity[5].Figures
1–3showmapsofvariouslarge-scalefacilitytypes,whichinclude:
•Enterprisedatacenters,whichareownedandoperatedbysinglecompaniesfortheirexclusivecomputingandnetworkinguse.Theseaccountforabout20–30%of
totalload[2,6].
•Co-locationcenters,whereseveralbusinessesmayrentspacetohousetheirserversandotherhardwarewithsharedenergyandcoolinginfrastructure.
•Hyperscaledatacenters,whicharecapableofrapidlyscalinguptheiroperationstomeetthevastcomputingneedsofcloudgiantslikeAmazonAWS,GoogleCloud,andMicrosoftAzure.Giventheirlargescaleandrecentemergence,theyareoftenattheforefrontofelectric-ityconsumptionandefficiencyinnovations.Hyperscaleandco-locationcenterstogetheraccountforthelion’sshareofU.S.datacenterload—about60%–70%[7].
8|PoweringIntelligenceMay2024
EnterpriseDataCenters
EnterpriseDataCenters(numberperstate)
0258
Figure1.U.S.enterprisedatacenterdistributionasof2022[4,8,9]
oCo-LocationDataCenters
Co-LocationDataCenters(numberperstate)
0163
Figure2.U.S.co-locationdatacenterdistributionasof2022[4,8,9]
9|PoweringIntelligenceMay2024
aHyperscaleDataCenters
HyperscaleDataCenters(numberperstate)
040
Figure3.U.S.hyperscaledatacenterdistributionasof2022[4,8,9]
DataCenters’PrimaryElectricity-
ConsumingHardwareandEquipment
Theelectricityneedsofdatacentersaredetermined
primarilybythethreeconstituenthardwarecategories.
Eachcategory’sproportionofenergyconsumptioncanvarydependingonthedatacenter’sage,configuration,type,
andfunction[10,11,12,13].Thethreemaincategoriesandtheirenergyconsumption[2,13,14]are:
•ITequipment,typicallycomposing40%–50%ofdata
centerenergyconsumption,encompassesthefollowingfoundationalhardwareunits:
-Servers,whicharetheworkhorses,responsiblefordataprocessingandcomputationaltasks
-Storagesystems,whichincludebothtraditional
harddiskdrives(HDDs)andthefaster,more
energy-efficientsolid-statedrives(SSDs),crucialfordataretention
-Networkinfrastructure,whichcomprisesswitches,routers,andothercomponents,ensuringseamlessdatatransferandconnectivity
•Coolingsystems,typicallycomposing30%–40%ofdatacenterenergyconsumption,arecriticaltomaintaining
anoptimaltemperaturewithindatacenterstopreventhardwaremalfunctionandensurelongevity.WhiledatacentershistoricallyusedtraditionalHVAC,advanced
coolingtechnologiesindatacentershavetransitionedtowardssystemsthatarespecializedfordatacenter
use.PleaserefertothesectionEnergyEfficiencyandLoadManagementbelowformoredetails.
•Auxiliarycomponents,typicallycomposing10%–30%ofdatacenterenergyconsumption,areusedforvarious
operationalneedsandincludeuninterruptiblepowersupplies,securitysystems,andlighting.
Assessingdatacenterenergyefficiencyiscrucialtogauginghoweffectivelytheyuseelectricity.Theseassessmentshelptoidentifytrends,driveimprovements,andsetbenchmarksforelectricityusage;andplayakeyroleinoperational
strategy[15,16].
10|PoweringIntelligenceMay2024
AIANDDATACENTERPOWER
CONSUMPTIONINSIGHTS
ImmenseVolumesofDataareBeingProcessedDaily
Datacenters’worldwideelectricityusein2022totaled300millionmegawatt-hours(MMWh),or1.2%ofallload,a45%increasefrom2015[17].IntheUnitedStatesin2023,datacentersaccountedforabout4%oftotalelectricitycon-
sumptionor150MMWh,equivalenttotheaverageannualconsumptionof14millionhouseholds[9,18].
Since2017,annualdatavolumeshavesoared,triplingtoaround4,750exabytes(anexabytebeingabillion
gigabytes)by2022,showcasingtheimmensevolumeof
informationbeingprocessedandtransmittedgloballyeveryday[19].In2022,thedailygenerationofdata—including
captured,copied,orconsumed—reachedapproximately
13exabytes,asurgepartlyattributabletotheburgeon-
ingimpactofAImodels[17].Concurrently,in2022,globaldatatransmissionnetworkenergyusewasreportedto
bearound260–360MMWh,roughlyequaltodatacenterpoweruse[17,20].Figure4illustratesthedramaticriseinglobalconsumerIPtraffic.
Datacentersarefacingasignificantchallengewithinternettrafficgrowingnearly12-foldinthepastdecade,atrend
paralleledbyincreasingAI-relatedworkloaddemands[19].ThehistoricalprecedentisshowcasedinFigure5,which
contraststheU.S.datastoragesupplyversusestimated
demandfrom2009to2020,underscoringagrowingdeficitandtheneedtoaddressthesetrends[22].
Despitetheimmensegrowthinnetworktrafficanddatageneration,loadgrowthhasbeenmuchslowerduetoef-ficiencygainsandconsolidation.
DatavolumeofglobalconsumerIPtrafficfrom2017to2022
Datavolumeinexabytespermonth
156201254319
396
400
300
200
100
0
122
201720182019202020212022
Figure4.TrendsinglobalconsumerIPtraffic,2017–2022[21]
45,000
StorageCapacityinExabytes
40,000
35,000
30,000
25,000
20,000
15,000
10,000
5,000
0
Demand
lSupply
200920102011201220132014201520162017201820192020
Figure5.U.S.datastoragesupplyvs.demand,2009–2020[22,23]
11|PoweringIntelligenceMay2024
HistoryofEnergyEfficiencyintheData
CenterIndustry
Overthelast25years,U.S.datacenterloadgrowth,asshowninFigure6,hasexperiencedthreephases:
1.Energyconsumptiongrewintheearly2000sdrivenbytherapidexpansionofinternetinfrastructureandthedot-comboom[24].
2.From2010–2020,electricityconsumptionstabilizedasdatacenterexpansionwasoffsetbyequallyrapidim-
provementsinenergyefficiencyachievedboththroughimprovementsatindividualfacilitiesandthroughthe
transitionfromsmalldatacenterstomoreefficientcloudfacilities[25,26].
3.Recentloadgrowthindatacentersisdrivenmainlyby
theexpandingdemandforcloudservices,bigdataana-lytics,andAItechnologies—whichrequiresignificant
computationalresources—andaslowingofefficiencygains[27].
Efficiencygainsinindividualdatacentershavebeenledbyadvancementsinserverefficiency,whichhavebeen
significant,leadingtoreducedpowerconsumptionperunit
ofcomputingpower[28].Powerandcoolingequipment,requiredtooperatetheITcomponents,hasalsoimproveditsefficiency.PowerUsageEffectiveness(PUE)andData
CenterInfrastructureEfficiency(DCIE),keyefficiency
metricsinthedatacenterindustry,aredefinedintheboxonthenex
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美术馆办公室制度规范
- 诊疗规范处方管理制度
- 职工宿舍规章制度规范
- 找到工作没就业协议书
- 废旧隔断采购合同范本
- 承包汽车装潢合同范本
- 房产整栋出售合同范本
- 建筑承包补充合同范本
- 小吃档口出售合同范本
- 房屋地契分割合同范本
- 售后工程师述职报告
- 粉刷安全晨会(班前会)
- 2024年国网35条严重违章及其释义解读-知识培训
- 部编版八年级语文上册课外文言文阅读训练5篇()【含答案及译文】
- 高三英语一轮复习人教版(2019)全七册单元写作主题汇 总目录清单
- 工业区物业服务手册
- 大学基础课《大学物理(一)》期末考试试题-含答案
- 道德与法治五年级上册练习测试题带答案(模拟题)
- 招标代理机构内部管理制度
- 2024新能源集控中心储能电站接入技术方案
- 生产拉丝部门工作总结
评论
0/150
提交评论