版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第03讲集合的基本运算模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.理解全集、补集的含义,能求出集合的补集;2.初步理解两个集合的并集与交集的含义,能够求出两个集合的并集和交集;3.通过解决涉及集合的交集、并集、补集的相关问题,掌握集合的三种语言(自然语言、符号语言和图形语言),并能够运用这些语言解决集合运算的基本问题.知识点1并集1、并集的概念自然语言一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集,记作A∪B,读作“A并B”符号语言A∪B={x|x∈A或x∈B}图形语言2、并集的运算性质性质定义满足交换律任何集合与其本身的并集等于这个集合本身任何集合与空集的并集等于这个集合本身多个集合的并集满足结合律,任何集合都是该集合与另一个集合并集的子集任何集合与它子集的并集都是它本身,反之亦然知识点2交集1、交集的概念自然语言由所有属于集合A且属于集合B的元素组成的集合,称为集合A与B的交集,记作A∩B,读作“A交B”符号语言A∩B={x|x∈A且x∈B}图形语言2、交集的运算性质性质定义满足交换律空集与任何集合的交集都是空集集合与集合本身的交集仍为集合本身多个集合的交集满足结合律多个集合的综合运算满足分配律若,则交集关系与子集关系的转化两个集合的交集是其中任一集合的子集知识点3全集与补集1、全集的概念自然语言一般地,如果一个集合包含所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记为U.符号语言若,则为全集.图形语言2、补集的概念自然语言若集合A是全集U的一个子集,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作.符号语言图形语言3、补集的运算性质性质定义任何集合与其补集的并集为全集任何集合与其补集的交集为空集任何集合补集的补集为集合本身全集的补集为空集,空集的补集为全集知识点4德摩根律与容斥原理1、德摩根定律:设集合U为全集,A、B为U的子集,则有(1)(2)2、容斥原理:在部分有限集中,我们经常遇到有关集合中元素的个数问题,常用Venn图表示两集合的交、并、补。如果用card表示有限集合元素的个数,即card(A)表示有限集A的元素个数,则有如下结论:(1)(2)知识点5区间及相关概念1、一般区间的表示:设a,b是两个实数,而且a<b,我们规定:这里的实数叫做区间的端点.在用区间表示连续的数集时,包含端点的那一端用中括号表示,不包含端点的那一端用小括号表示.
定义名称符号数轴表示闭区间开区间半开半闭区间半开半闭区间2、实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.3、特殊区间的表示定义符号数轴表示≥≤考点一:并集的概念与运算例1.已知集合,则()A. B. C. D.【变式11】设集合,,则等于(
)A. B. C. D.【变式12】设集合,,则(
)A. B. C. D.【变式13】设集合,则(
)A. B. C. D.考点二:交集的概念与运算例2.若集合,,则(
)A. B. C. D.【变式21】设集合,,则(
)A. B. C. D.【变式22】已知集合,,则(
)A. B. C. D.【变式23】已知集合或,则(
)A. B.C. D.考点三:补集的概念与运算例3.设全集,集合,则=(
)A.{4,5,6} B.{3,4,5} C.{1,2,3,4,5,6} D.【变式31】设全集,集合满足,则(
)A. B. C. D.【变式32】已知集合,,则(
)A. B. C. D.【变式33】已知全集,集合,则(
)A. B.C.或 D.考点四:由交、并、补运算求参数例4.已知集合,,若,则(
)A.0 B.1 C.2 D.4【变式41】设集合,.若,则实数的取值范围是(
)A. B.C. D.【变式42】已知集合,,若,则(
)A.1 B.2 C.3 D.4【变式43】已知集合,,且,则实数的取值范围是(
)A. B. C. D.【变式44】设全集,且,若,则m的值等于(
)A.4 B.6 C.4或6 D.不存在考点五:交、并、补混合运算例5.已知集合,则(
)A. B. C. D.【变式51】已知全集,则=(
)A. B. C. D.【变式52】设全集,集合,,则=(
)A. B. C. D.【变式53】设全集,集合,,则(
)A. B. C. D.考点六:根据集合的混合运算求参数例6.已知集合,,若,则实数的取值范围为(
)A. B. C. D.【变式61】已知集合,,若,则的取值范围是(
)A. B. C. D.【变式62】已知集合.若,则实数的取值范围为(
)A. B. C.或 D.【变式63】已知,集合,,,则实数(
)A.或 B.或0 C.或0 D.或或0考点七:Venn图在集合运算的运用例7.设全集,集合,那么图中的白色部分所表示的集合是(
)
A. B. C. D.【变式71】设集合,,则图中的阴影部分表示的集合为(
)
A. B. C. D.【变式72】如图,是全集,是的两个子集,则图中的阴影部分可以表示为(
)
A. B. C. D.【变式73】(多选)图中矩形表示集合U,两个椭圆分别表示集合M,N,则图中的阴影部分可以表示为(
)
A. B.C. D.考点八:集合运算在实际中的应用例8.高一班共有28名同学非常喜欢数学,有15人学习必修一,有8人学习必修二,有14人学习选修一,同时学习必修一和必修二的有3人,同时学习必修一和选修一的有3人,没有人同时学习三本书.同时学习必修二和选修一的有(
)人,只学习必修一的有(
)人.A.9,3 B.11,3 C.9,12 D.3,9【变式81】为丰富学生的课外活动,学校开展了“数学建模选修课”和“语文素养选修课”,两项选修课都参与的有30人,两项选修课都没有参与的有20人,全校共有317人.问只参与一项活动的同学有多少人?(
)A.237 B.297 C.277 D.267【变式82】学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛的有3人。两次运动会中,这个班总共参赛的同学有(
)A.20人 B.17人 C.15人 D.12人【变式83】建党百年之际,影片《1921》《长津湖》《革命者》都已陆续上映,截止2021年10月底,《长津湖》票房收入已超56亿元,某市文化调查机构,在至少观看了这三部影片中的其中一部影片的市民中随机抽取了若干人进行调查,得知其中观看了《1921》的有51人,观看了《长津湖》的有60人,观看了《革命者》的有50人,数据如图,则图中.1.(2023·北京·高考真题)已知集合,则(
)A. B. C. D.2.(2023·全国乙卷·高考真题)设全集,集合,则(
)A. B. C. D.3.设集合,,则(
)A. B. C. D.4.已知,且,则的值为(
)A.4 B. C. D.55.某班共有38人,其中21人喜爱跑步运动,15人喜爱篮球运动,10人对两项运动都不喜爱,则对两项运动都喜爱的人数为(
)A.5 B.6 C.8 D.96.已知集合,,,则(
)A. B. C. D.7.(多选)如图,全集为U,集合A,B是U的两个子集,则阴影部分可表示为(
)A. B.C. D.8.(多选)若全集,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浅析仲裁员的披露义务
- 2024-2025学年辽宁省沈阳市大东区尚品学校八年级(上)月考数学试卷(10月份)(含答案)
- 2023-2024学年广东省肇庆中学七年级(下)期中数学试卷(含答案)
- 2021年武汉市中考化学试卷及答案
- 重庆申论模拟4
- 江苏行政职业能力2009年C类
- 浙江行政职业能力26
- 小学心理健康教育课程三年级(上册)教案设计
- 超市2024年中秋节活动策划25篇
- 青海省公务员面试真题汇编14
- 2024年盘锦北方沥青股份有限公司招聘笔试参考题库含答案解析
- 腹部手术后的康复护理指导
- 小学高年级数学作业设计研究
- 宿迁市泗阳县2022-2023学年高一上学期11月期中数学试题(解析版)
- 中国动态血糖监测临床应用指南
- photoshop软件市场调研报告
- 防静电衣管理制度
- 2024年北京农商银行招聘笔试参考题库含答案解析
- 专科护理技术操作常见并发症的处理
- 2023-2024学年山东省潍坊市高一上学期11月期中质量监测数学试题(解析版)
- 外科(整形外科方向)住院医师规范化培训内容与标准
评论
0/150
提交评论