版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市怀柔区市级名校2025年高三数学试题3月25日第4周测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等比数列的前项和为,若,,,,则()A. B. C. D.2.设a,b∈(0,1)∪(1,+∞),则"a=b"是"logA.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件3.如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为()A. B.C. D.4.已知是函数的极大值点,则的取值范围是A. B.C. D.5.已知,为两条不同直线,,,为三个不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,则.其中正确命题序号为()A.②③ B.②③④ C.①④ D.①②③6.已知偶函数在区间内单调递减,,,,则,,满足()A. B. C. D.7.已知,,,则()A. B.C. D.8.已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为()A. B. C. D.9.已知集合,则的值域为()A. B. C. D.10.已知双曲线:的左、右两个焦点分别为,,若存在点满足,则该双曲线的离心率为()A.2 B. C. D.511.已知数列中,,若对于任意的,不等式恒成立,则实数的取值范围为()A. B.C. D.12.以下关于的命题,正确的是A.函数在区间上单调递增B.直线需是函数图象的一条对称轴C.点是函数图象的一个对称中心D.将函数图象向左平移需个单位,可得到的图象二、填空题:本题共4小题,每小题5分,共20分。13.春天即将来临,某学校开展以“拥抱春天,播种绿色”为主题的植物种植实践体验活动.已知某种盆栽植物每株成活的概率为,各株是否成活相互独立.该学校的某班随机领养了此种盆栽植物10株,设为其中成活的株数,若的方差,,则________.14.某班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是__________.15.若变量,满足约束条件则的最大值是______.16.如图,在平行四边形中,,,则的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱柱中,底面是等边三角形,侧面是矩形,是的中点,是棱上的点,且.(1)证明:平面;(2)若,求二面角的余弦值.18.(12分)某精密仪器生产车间每天生产个零件,质检员小张每天都会随机地从中抽取50个零件进行检查是否合格,若较多零件不合格,则需对其余所有零件进行检查.根据多年的生产数据和经验,这些零件的长度服从正态分布(单位:微米),且相互独立.若零件的长度满足,则认为该零件是合格的,否则该零件不合格.(1)假设某一天小张抽查出不合格的零件数为,求及的数学期望;(2)小张某天恰好从50个零件中检查出2个不合格的零件,若以此频率作为当天生产零件的不合格率.已知检查一个零件的成本为10元,而每个不合格零件流入市场带来的损失为260元.假设充分大,为了使损失尽量小,小张是否需要检查其余所有零件,试说明理由.附:若随机变量服从正态分布,则.19.(12分)为了解广大学生家长对校园食品安全的认识,某市食品安全检测部门对该市家长进行了一次校园食品安全网络知识问卷调查,每一位学生家长仅有一次参加机会,现对有效问卷进行整理,并随机抽取出了200份答卷,统计这些答卷的得分(满分:100分)制出的频率分布直方图如图所示,由频率分布直方图可以认为,此次问卷调查的得分服从正态分布,其中近似为这200人得分的平均值(同一组数据用该组区间的中点值作为代表).(1)请利用正态分布的知识求;(2)该市食品安全检测部门为此次参加问卷调查的学生家长制定如下奖励方案:①得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费:②每次获赠的随机话费和对应的概率为:获赠的随机话费(单位:元)概率市食品安全检测部门预计参加此次活动的家长约5000人,请依据以上数据估计此次活动可能赠送出多少话费?附:①;②若;则,,.20.(12分)已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量.21.(12分)已知函数.(1)当时,试求曲线在点处的切线;(2)试讨论函数的单调区间.22.(10分)在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.(1)求的长;(2)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】试题分析:由于在等比数列中,由可得:,又因为,所以有:是方程的二实根,又,,所以,故解得:,从而公比;那么,故选D.考点:等比数列.2.A【解析】
根据题意得到充分性,验证a=2,b=1【详解】a,b∈0,1∪1,+∞,当"a=b当logab=log故选:A.本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.3.D【解析】因为蛋巢的底面是边长为的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为,又因为鸡蛋的体积为,所以球的半径为,所以球心到截面的距离,而截面到球体最低点距离为,而蛋巢的高度为,故球体到蛋巢底面的最短距离为.点睛:本题主要考查折叠问题,考查球体有关的知识.在解答过程中,如果遇到球体或者圆锥等几何体的内接或外接几何体的问题时,可以采用轴截面的方法来处理.也就是画出题目通过球心和最低点的截面,然后利用弦长和勾股定理来解决.球的表面积公式和体积公式是需要熟记的.4.B【解析】
方法一:令,则,,当,时,,单调递减,∴时,,,且,∴,即在上单调递增,时,,,且,∴,即在上单调递减,∴是函数的极大值点,∴满足题意;当时,存在使得,即,又在上单调递减,∴时,,所以,这与是函数的极大值点矛盾.综上,.故选B.方法二:依据极值的定义,要使是函数的极大值点,须在的左侧附近,,即;在的右侧附近,,即.易知,时,与相切于原点,所以根据与的图象关系,可得,故选B.5.C【解析】
根据直线与平面,平面与平面的位置关系进行判断即可.【详解】根据面面平行的性质以及判定定理可得,若,,则,故①正确;若,,平面可能相交,故②错误;若,,则可能平行,故③错误;由线面垂直的性质可得,④正确;故选:C本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.6.D【解析】
首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小【详解】因为偶函数在减,所以在上增,,,,∴.故选:D本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题.7.C【解析】
利用二倍角公式,和同角三角函数的商数关系式,化简可得,即可求得结果.【详解】,所以,即.故选:C.本题考查三角恒等变换中二倍角公式的应用和弦化切化简三角函数,难度较易.8.D【解析】
将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,,是增函数;当时,,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,,是增函数;当时,,是减函数.因此.设,,若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,即,解得.由,即,所以.因为,所以,代入,得.设,,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题9.A【解析】
先求出集合,化简=,令,得由二次函数的性质即可得值域.【详解】由,得,,令,,,所以得,在上递增,在上递减,,所以,即的值域为故选A本题考查了二次不等式的解法、二次函数最值的求法,换元法要注意新变量的范围,属于中档题10.B【解析】
利用双曲线的定义和条件中的比例关系可求.【详解】.选B.本题主要考查双曲线的定义及离心率,离心率求解时,一般是把已知条件,转化为a,b,c的关系式.11.B【解析】
先根据题意,对原式进行化简可得,然后利用累加法求得,然后不等式恒成立转化为恒成立,再利用函数性质解不等式即可得出答案.【详解】由题,即由累加法可得:即对于任意的,不等式恒成立即令可得且即可得或故选B本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.12.D【解析】
利用辅助角公式化简函数得到,再逐项判断正误得到答案.【详解】A选项,函数先增后减,错误B选项,不是函数对称轴,错误C选项,,不是对称中心,错误D选项,图象向左平移需个单位得到,正确故答案选D本题考查了三角函数的单调性,对称轴,对称中心,平移,意在考查学生对于三角函数性质的综合应用,其中化简三角函数是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由题意可知:,且,从而可得值.【详解】由题意可知:∴,即,∴故答案为:本题考查二项分布的实际应用,考查分析问题解决问题的能力,考查计算能力,属于中档题.14.18【解析】
根据系统抽样的定义和方法,所抽取的4个个体的编号成等差数列,故可根据其中三个个体的编号求出另一个个体的编号.【详解】解:根据系统抽样的定义和方法,所抽取的4个个体的编号成等差数列,已知其中三个个体的编号为5,31,44,故还有一个抽取的个体的编号为18,故答案为:18本题主要考查系统抽样的定义和方法,属于简单题.15.9【解析】
做出满足条件的可行域,根据图形,即可求出的最大值.【详解】做出不等式组表示的可行域,如图阴影部分所示,目标函数过点时取得最大值,联立,解得,即,所以最大值为9.故答案为:9.本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.16.【解析】
根据ABCD是平行四边形可得出,然后代入AB=2,AD=1即可求出的值.【详解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案为:﹣1.本题考查了向量加法的平行四边形法则,相等向量和相反向量的定义,向量数量积的运算,考查了计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2)【解析】
(1)连结BM,推导出BC⊥BB1,AA1⊥BC,从而AA1⊥MC,进而AA1⊥平面BCM,AA1⊥MB,推导出四边形AMNP是平行四边形,从而MN∥AP,由此能证明MN∥平面ABC.(2)推导出△ABA1是等腰直角三角形,设AB,则AA1=2a,BM=AM=a,推导出MC⊥BM,MC⊥AA1,BM⊥AA1,以M为坐标原点,MA1,MB,MC为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角A﹣CM﹣N的余弦值.【详解】(1)如图1,在三棱柱中,连结,因为是矩形,所以,因为,所以,又因为,,所以平面,所以,又因为,所以是中点,取中点,连结,,因为是的中点,则且,所以且,所以四边形是平行四边形,所以,又因为平面,平面,所以平面.(图1)(图2)(2)因为,所以是等腰直角三角形,设,则,.在中,,所以.在中,,所以,由(1)知,则,,如图2,以为坐标原点,,,的方向分别为轴,轴,轴的正方向建立空间直角坐标系,则,,.所以,则,,设平面的法向量为,则即取得.故平面的一个法向量为,因为平面的一个法向量为,则.因为二面角为钝角,所以二面角的余弦值为.本题考查线面平行的证明,考查了利用空间向量法求解二面角的方法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.18.(1)见解析(2)需要,见解析【解析】
(1)由零件的长度服从正态分布且相互独立,零件的长度满足即为合格,则每一个零件的长度合格的概率为,满足二项分布,利用补集的思想求得,再根据公式求得;(2)由题可得不合格率为,检查的成本为,求出不检查时损失的期望,与成本作差,再与0比较大小即可判断.【详解】(1),由于满足二项分布,故.(2)由题意可知不合格率为,若不检查,损失的期望为;若检查,成本为,由于,当充分大时,,所以为了使损失尽量小,小张需要检查其余所有零件.本题考查正态分布的应用,考查二项分布的期望,考查补集思想的应用,考查分析能力与数据处理能力.19.(1);(2)估计此次活动可能赠送出100000元话费【解析】
(1)根据正态分布的性质可求的值.(2)设某家长参加活动可获赠话费为元,利用题设条件求出其分布列,再利用公式求出其期望后可得计此次活动可能赠送出的话费数额.【详解】(1)根据题中所给的统计表,结合题中所给的条件,可以求得又,,所以;(2)根据题意,某家长参加活动可获赠话费的可能值有10,20,30,40元,且每位家长获得赠送1次、2次话费的概率都为,得10元的情况为低于平均值,概率,得20元的情况有两种,得分低于平均值,一次性获20元话费;得分不低于平均值,2次均获赠10元话费,概率,得30元的情况为:得分不低于平均值,一次获赠10元话费,另一次获赠20元话费,其概率为,得40元的其情况得分不低于平均值,两次机会均获20元话费,概率为.所以变量的分布列为:某家长获赠话费的期望为.所以估计此次活动可能赠送出100000元话费.本题考查正态分布、离散型随机变量的分布列及数学期望,注意与正态分布有关的计算要利用该分布的密度函数图象的对称性来进行,本题属于中档题.20.另一个特征值为,对应的一个特征向量【解析】
根据特征多项式的一个零点为3,可得,再回代到方程即可解出另一个特征值为,最后利用求特征向量的一般步骤,可求出其对应的一个特征向量.【详解】矩阵的特征多项式为:,是方程的一个根,,解得,即方程即,,可得另一个特征值为:,设对应的一个特征向量为:则由,得得,令,则,所以矩阵另一个特征值为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年工程筒灯项目规划申请报告模稿
- 2025年海洋油气开采模块项目提案报告模稿
- 2024-2025学年邢台市柏乡县数学三上期末复习检测模拟试题含解析
- 2025年检测设备项目申请报告
- 2025年商业专用设备:条码设备项目申请报告模板
- 专业求职信九篇
- 2024-2025学年突泉县三上数学期末考试模拟试题含解析
- 中学教师辞职报告15篇
- 2025年卫浴树脂项目提案报告
- 大一新生军训动员大会心得10篇
- 广东省广州海珠区2023-2024学年八年级上学期期末数学试卷(含答案)
- 2024年《论教育》全文课件
- 生命安全与救援学习通超星期末考试答案章节答案2024年
- (2024年)面神经炎课件完整版
- 华电行测题库及答案2024
- 马工程版《中国经济史》各章思考题答题要点及详解
- 一年级口算天天练(可直接打印)
- 《模拟电子技术基础》课程设计-心电图仪设计与制作
- 公司治理(马连福 第2版) 课后答案及案例分析 第2章
- 绘本brown bear教案及反思
- 《航空专业英语》课件飞机结构修理专业英语
评论
0/150
提交评论