苏教版五年级数学上册知识点归纳总结_第1页
苏教版五年级数学上册知识点归纳总结_第2页
苏教版五年级数学上册知识点归纳总结_第3页
苏教版五年级数学上册知识点归纳总结_第4页
苏教版五年级数学上册知识点归纳总结_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

苏教版五年级数学上册知识点总结

(一)负数的初步认识

负数的初步认识(一)

正负数及零的意义:像+20,+8848,+3260这样的数都是正数(正数前面的“十”

可以省略不写),像-20,-155,-422这样的数都是负数。

0是正数和负数的分界线,0既不是正数也不是负数。

负数的初步认识(二)

1.生活中具有相反意义的数量:像零。C以上与零。C以下,海平面以上和海平面以

下,地面以上和地面以下,存入和取出,比赛的得分和失分,股价的上涨和下跌

等等都是由相反意义的量,都可以用正负数来表示。

2.初步认识数轴:(1)0右边的数都是正数,0左边的数都是负数。

(2)-2和2到0的距离相等。

(3)正数都大于0,负数都小于0。

(二)多边形的面积

平行四边形的面积

1.公式推导:沿着平行四边形任意一条边上的高,将平行四边形分成两部分,再

经过平移或者旋转,可以将平行四边形转化成长方形。通过观察发现,长方形的

长是原平行四边形的底,长方形的宽是原平行四边形的高。

通过长方形的面积公式,我们可以得到平行四边形的面积公式,如果用S表示

平行四边形的面积,用a和h分别表示平行四边形的底和高,可以得到平行四

边形的面积为:S=aXho

2.平行四边形拉伸和平移问题:

(1)把一个长方形框拉成平行四边形,周长不变,高变小,面积也变小;同理,

把平行四边形框拉成长方形,周长不变,高变大了,面积也变大。

1

(2)把一个平行四边形拼成长方形,面积不变,宽变小了,周长也变小。

3.两平行四边形之间的关系:等底等高的两平行四边形面积一定相等,但面积相

等的两个平行四边形形状不一定相同;

三角形的面积:

1.公式推导:用两个完全相同的三角形,可以拼成一个平行四边形。三角形的面

积等于拼成的平行四边形的一半。观察可以发现,平行四边形的底和三角形的底

相同,平行四边形的高和三角形的高相同。

通过平行四边形的面积公式,可以推导出三角形的面积公式。如果S表示三角形

的面积,用a和h分别表示三角形的底和高,三角形的面积公式为:S=aXh4-2o

2.两三角形之间的关系:等底等高的两三角形面积一定相等,但面积相等的两个

三角形形状不一定相同;

3.三角形与平行四边形之间的关系:

(1)一个平行四边形能分割成两个完全相同的三角形;两个完全相同的三角形能

拼成一个平行四边形;

(2)等底等高的三角形面积是平行四边形面积的一半;

(3)等面积、等底(高)的三角形和平行四边形,三角形的高(底)是平行四边

形的2倍;

梯形的面积:

1.推导公式:两个完全相同的梯形可以拼成一个平行四边形,梯形的面积等于拼

成的平行四边形面积的一半。通过观察可以发现,拼成的平行四边形的底等于梯

形的上底、下底之和,平行四边形的高等于梯形的高。

2

根据平行四边形面积公式,可以推导出梯形的面积公式。用S表示梯形的面积,

a、b和h分别表示梯形的上底、下底和高,梯形的面积公式为:S=(a+b)Xh4-2O

2.梯形与平行四边形之间的关系:

(1)一个平行四边形可以分成两个完全相同的梯形,注意两个不同的梯形也可以

拼成一个平行四边形;

(2)要从梯形中剪去一个最大的平行四边形,那么应把梯形的上底作为平行四边

形的底,这样剪去才能最大。

公顷和平方千米:

1.公顷:1公顷就是边长100米的正方形的面积,1公顷=10000平方米。一个社

区、校园的面积通常用“公顷”为单位;

2.平方千米:1平方千米就是边长1000米的正方形的面积,1平方千米=100公

顷=100万平方米=1000000平方米。表示一个国家、省市、地区、湖泊的面积是

就要用“平方千米”作单位。

3.面积单位换算进率:

^ioo^2叩f要之

mm?cm3。9Tdm2—i3°°°°—C。97km

4.重量单位之间的进率

1吨=1000千克1千克=1000克

5.时间单位之间的进率

1年=12个月1周=7天1天=24小时1小时

=60分钟1分钟=60秒

【例11单位换算

8平方米=()平方分米3平方分米=()平方厘米

7平方分米=()平方厘米()平方分米=15平方米

()平方厘米=78平方分米10平方千米=()公顷

120000平方米=()公顷7平方米=()平方分米

78公顷=()平方米55平方分米=()平方厘米

14平方米=()平方分米360000平方米=()公顷

3平方千米=()平方米=()公顷

【例2】在括号里填上合适的单位名称。

3

课桌的面积大约是44()。一枚邮票的面积大约是8()。

教室的面积大约是48()。我们校园的面积大约是2()。

江苏省的面积大约是10.26()。

简单组合图形的面积:

1.求组合图形面积的常见方法:

⑴分割法:可以把一个组合图形分成几个简单的图形,分别求出这几个简单图形

的面积,再求和。

⑵添补法:可以把一个组合图形看作是从一个简单图形中减去几个简单的图形,

求出它们的面积差。

2.计算组合图形的面积的基本策略:把原来的图形先分割成几个基本图形,再求

这几个基本图形的面积之和;或者先把原来的图形拼补一个基本图形,再求相关

基本图形面积之差。

【例1】求下面图形的面积(单位:m)o你能想出几种方法。

不规则图形的面积:

1.要点:

(1)把整格和半格分别涂上不同的颜色,避免重复和遗漏。

(2)不满整格的可以全部看成半格计算;或者先数整格的个数,再把不满整格的

也看成整格,数出一共有多少格。

(3)有顺序地去数,做到不重复、不遗漏。

2.方法:先数整格的,再数不满整格的,不满整格的除以2折算成整格,最后

相加;若不规则图形为轴对称图形,可先算出一半图形的面积,再乘以2。

【例1】图中每个小方格的面积为1机2,请你估计这个池塘的面积。

4

(三)小数的意义和性质

小数的意义和读写方法:

L小数的意义:分母是10、100、1000……的分数都可以用小数表示。一位小数

表示十分之几,两位小数表示百分之几,三位小数表示千分之几...

2.小数的读写:整数部分的0在每一级中间要读出来,在末尾不用读出来,而小

数部分的0都要读出来(常考题)

【例1】填空

⑴506毫米=()米;(2)23分=()元;

(3)148厘米=()米;(4)8角5分=()元;

(5)0.023米=()毫米;(6)3.09元=()元()分;

2."b_()

(7)0.008=—;0.621=-;3.15----;

()(3()

【例2】用0、0、2、6这四个数字和小数点组成小数。

(1)组成最小的小数();(2)组成最大的小数();

(3)组成最小的两位小数();(4)组成最大的两位小数();

(5)组成只读一个0的两位小数();(6)组成一个0都不读的小数();

小数的计数单位和数位顺序表:

整数部分小数点小数部分

数级亿级万级个级

十千百十十百千

亿万千百十个

数位・・・亿万万万分分分…

位位位位位位

位位位位位位位

十百千

个分分分

计数十千百十

亿万千百十或之之之•••

单位亿万万万

0.10.010.001

说明:(1)相邻两个计数单位之间的进率都是10;(2)整数部分没有最高位,小数部分没

有最低位;(3)整数部分最低位是个位,小数部分最高位是十分位。

【例1】在6.47这个数中,6在()位上,表示()个();4在

()位上表示()个();7在()位上,表示()个()o

5

【例2】0.508是由()个十分之一和()个千分之一组成的,也可以看

作是由()个千分之一组成的。

【例3】1里面有()个0.1,()个百分之一;50里面有()个0.01。

【例4】1.45的计数单位是(),1.45含有()个这样的计数单位。1.450

的计数单位是(),1.450含有()个这样的计数单位。

【例5】一个小数的计数单位是0.001,它比0.01大,又比0.02小,这个小数可

能是。

小数的性质:

1.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

2.易错点:①在小数点后面添上0或者去掉0,小数的大小不变。(X)

②在一个数后面添上0或者去掉0,小数的大小不变。(x)

【例1]把下面各数改写成小数部分是两位的小数。

5元6角=()元8分=()元

1分米2厘米=()米12厘米=()米

【例2】在800,8.00,0.80,80.000这几个数中,不改变原数的大小,能去掉3

个0的数是(),只能去掉2个0的数是(),只能去掉1个0的数是(),

一个0也不能去掉的数是()。

小数的大小比较:

先看整数部分,整数部分大的数就大;整数部分相同的,十分位上的数大的小数

就大;十分位上的数相同的,再比较百分位上的数,以此类推.

【例1】比较大小:

0.76、0.067、0.706、0.076、0.67、0.607

()<()<()<()<()<()

【例2】7.D6>7.46,口里可填的数是()。

[例3]大于0.5而小于1的一位小数有()个。大于0.07而小于0.08的

三位小数有()个;

【例4】在口.D8的两个口里各填一个数字,使得到的小数分别符合下面的要求,

(1)使这个小数尽可能大,这个小数是()。

(2)使这个小数尽可能小,这个小数是()。

6

(3)使这个小数尽可能接近5,这个小数是()。

大数值的改写

1.用“万''作单位:a、从个位起,往左数四位,画“1”,在“1”下方点小数

点;b、去掉小数末尾的“0”,添上“万”字;c、用连接。

2.用“亿''作单位:a、从个位起,往左数八位,画“1”,在“1”下方点小

数点;b、去掉小数末尾的“0”,添上“亿”字;c、用连接。

[例1]把168000改写成用“万”作单位的数是();省略万

位后面的尾数是();把995000000元改写成以“亿元”

为单位的数是(),保留一位小数是()。

小数的近似数

1.保留整数:就是精确到个位,要看十分位上的数来决定四舍五入。

2.保留一位小数:就是精确到十分位,要看百分位上的数来决定四舍五入。

3.保留两位小数:就是精确到百分位,要看千分位上的数来决定四舍五入。

[例1]求下面各数的近似数:

1、5.064(精确到十分位)

2、3.1449(精确到百分位)

3、2.905(保留一位小数)

4、2549880000(改写成用“亿”作单位的数,再保留两位小数)

(四)小数加法和减法

小数的加法和减法

1.小数加法和减法的计算方法:要把小数点对齐,也就是相同数位对齐;从最低

位算起,各位满十要进一;不够减时要向前一位借1当10再减。

2.被减数是整数时,要添上小数点,并根据减数的小数部分补上“0”后再减。

3.用竖式计算小数加、减法时,小数点末尾的“0”不能去掉,把结果写在横式

中时,小数点末尾的“0”要去掉。

[例1]数字7在十位上比在十分位上表示的数大(),小于1的最大的三位

小数比最小的两位小数大()。

【例2】3.6的计数单位是(),它有()个这样的单位,再加上()

7

个这样的计数单位就得到4.

【例3】在一个减法算式中,差是6.25,如果被减数增加0.5,减数减少0.5,则

现在的差是()。

小数加减法简便计算:

1.加法运算律:加法交换律:a+b=b+a

加法结合律:a+b+c=a+(b+c)

2.减法的性质:a-b-c=a-(b+c)a-(b-c)=a-b+c

a+b-c=a-c+ba+b-c+d=a-c+b+d

【类型一】8.43+2.87+0.57+0.13【类型二】6.52-3.44-2.56

【类型三】9.6+6.7-9.6+3.3【类型四】17.84-(5.84+11.79)

(五)小数乘法和除法

小数乘整数:

小数乘整数,先按整数乘法计算,再看乘数里有几位小数,就从积的右边起数出

几位,点上小数点。

【例1】根据504X25=12600,直接写出下面每题的积。

5.04X25=50.4X25=0.504X25=

504X0.25=504X2.5=504X0.025=

一个数乘10、100、1000……的计算规律

1.规律:一个小数乘10、100、1000……小数点就分别向右移动一位、两位、三

位……反过来.把小数的小数点向右移动一位两位、三位……就等于把这个小数

乘10、100、1000……这就是小数点移动引起的小数大小变化规律。

注意:如果当移动小数点但末尾数位不够时,可以用添“0”的办法补足数位,

过去一个整数乘10就在末尾添1个“0”,乘100就在末尾添2个“0”……

2.单位换算:例如求0.86吨=?千克时,可以这样想:把吨数改写成千克数,是

把高级单位的数改写成低级单位的数,要乘以进率,进率是1000,只要把0.86

的小数点向右移动三位。

[例1]在括号里填上合适的数。

0.04X()=40.978X()=9785.08X()=50.8

8

46.5X()=46500.09X()=91.04X()=104

【例2】单位换算。

2.3米=()分米3.004升=()豪升

7.07千克=()克21平方分米9平方厘米=()平方厘米

0.6平方米=()平方厘米4.3小时=()小时()分

一个数除以整数

除数是整数的小数除法,按整数除法算,商的小数点和被除数对齐;末尾有余数

添0继续除;整数部分不够商1在个位商0。

一个数除以10、100、1000……的计算规律

1.规律:一个小数除以10、100、1000……小数点就分别向左移动一位、两位、

三位……反过来,把一个数的小数点向左移动一位、两位、三位……就等于把这

个小数除以10、100、1000...

注意:如果当移动小数点数位不够时,可以用添“0”补足数位。整数实际上就

是小数部分都是0的数,同样可以用这个规律求商。过去一个整十、整百数

除似10或100,就在末尾去掉1个“0”或2个“0”……

2.单位换算:例如求4.6分米=?米时,可以这样想:这道题是把分米数改写成

米数,是把低级单位的数改写成高级单位的数,要除以进率,进率是10,只要

把4.6的小数点向右移动一位。

[例1]在括号里填上合适的数。

139.84-()=1.39847.84-()=0.47811534-()=1.153

84-1000=()()4-100=7.5()4-10=0.01

【例2】单位换算

17分米=()米1200毫升=()升

3050米=()千米350平方分米=()平方米

710克=()千克5030千克=()吨

150分=()小时720平方厘米=()平方分米

小数乘以小数

1.法则:小数乘小数先按整数乘洪乘,再看乘数里一共有几位小数,就从积的右

边起数出几位,点上小数点。当小数位数不够时,在前面用0补足;末尾有0

9

的要先点小数点再化简。

2.积不变的规律:

(1)一个乘数扩大多少倍,另一个乘数缩小相应的倍数,积不变;

(2)当一个乘数不为0时,另一个乘数大于1,积就大于第一个乘数;另一个乘

数小于1,积就小于第一个乘数。

[例1]根据44X21=924,直接写出下面几个算式的积。

4.4X2.1=(0.44X0.21=(

0.44X2.1=(4.4X0.21=()

【例2】在括号填入合适的数,使等式成立。

5.46X24=2.4X()4.24X0.25=()X0.424

6.4X0.53=5.3X()18X0.42=0.18X()

【例3】比较大小0.8X1.5O0.8;0.8X1.501.5O

积的近似值

求积的近似值,先计算乘法的积,根据要保留的位数看后一位上的数,用四舍五

人的方法得出积的近似数。结果是近似值的,要用约等号表示。

【例1】6.9628保留整数是();保留到十分位是();保留两位小

数是();保留三位小数是()

【例2】求一个小数的近似数,如果保留三位小数,要看小数第()位。

一个数除以小数

1.被除数数位够:先划去除数的小数点,将除数变成整数,然后除数的小数点向

右移动了一位,被除数的小数点也向右移动一位,划去被除数原来的小数点,再

按照除数是整数的除法来计算。

2.被除数数位不够:(1)先把除数转化成整数;(2)把除数转化成整数后,被

除数的小数点也要向右移动相同位数。如果位数不够,要用0补足;(3)再按除

数是整数的计算方法进行计算。

3.商不变的规律:

(1)除数和被除数扩大相同倍数,商不变;

(2)当被除数不为0时,除数大于1,商就小于被除数;除数小于1,商就大于

被除数。

【例11把下面的式子变成除数是整数的除法算式

10

0.754-0.25=()4-250.6724-4.2=()4-42

0.244-4.8=()4-48144-0.56=()4-()

76.84-0.5=()4-50.544-0.18=()4-()

[例2]根据16644-13=128写出下面各题的商。

16.644-0.13=()166.44-0.13=()

16644-0.013=()1.6644-1.3=

166.44-130=()16.644-1.3=

【例3】巧比大小。

12,014-1.02012.010.364-0.3600.36

7.8X0.9800.9810.8+5.4010.8

1.8X1.1018X0.110.994-1.100.99X1.1

商的近似值

1.求商的近似值:保留整数要除到()位,保留一位小数要除到()

保留两位小数要除到(),也就是比保留的位数多除()位,再按()

法取近似值。

2.循环小数:

[有限小数(小数部分位数是有限的)

[无限小数(小数部分位数是无限的)

循环小数:0.378378.......1.13636

(用循环节表示)0.3781.136

3.进一法:有时候不管余下的数是多少,都还需要分1份,就要用进一法把结果

添上1,比如只要油有余下的,不管余下多少都要有1个油壶才能装完,这就要

在商里添上1个。

4.去尾法:有时候不管余下的数是多少,都不能再得到1个或1份时,就要用去

尾法舍去余数,比如余下的钱不够再买1个足球、余下的米数不够做1件衣服,

这余数就舍去。

【例1】一间教室长8.8米,宽6.5米,如果用0.38平方米的瓷砖铺地,至少需

要多少块瓷砖?(得数保留整数)

【例2】植物油厂的每个油桶最多装油4.5千克,要装600千克的油,需要多少

11

个油桶?

【例3】金星服装厂有一批布料,如果做儿童服装,每套用布2.2米,正好可以

做100套;如果用来做成人服装,每套用布2.5米,那么可以做多少套成人服装

呢?

小数四则混合运算

1.运算顺序:(1)同一级符号从左往右依次计算;(2)既有加减,又有乘除,

先算乘除,再算加减;(3)有小括号的,先算小括号里面的。

2.简便计算类型:

(1)乘法结合律(axb)xc=ax(cxb)

基本方法:先交换因数的位置,再计算。

【例1】4.36X12.5X8【例2】0.95X0.25X4

(2)乘法分配律

乘法分配律(a+b)xc=axc+bxc

[例1](1.25-0,125)X8[例2](20-4)X0.25

(3)乘法分配律逆应用

乘法分配律逆向定律axb+axc=a(b+c)

[例1]3.72X3.5+6.28X3.5【例2】15.6X2.1-15.6X1.1

(4)乘法分配律拓展应用

[例1]4.8X10.1[例2]0,39X199

(5)拆分因数

[例1]1,25X2,5X32[例213.2X0.25X12.5

(6)添加因数“1”

【例1】56,5X99+56.5[例2]4,2X99+4.2

(7)更改因数的小数点位置

[例1]6,66X3.3+66.6X67[例2]4,8X7.8+78X0.52

(8)除法的性质

字母表不:a+b+c=a+(bxc)

【例1】4204-2.54-4[例2]17.84-(1.78X4)

(六)统计表和条形统计图(二)

12

复式统计表

复式统计表其实就是由几张单式统计表合成的,所以从复式统计表中,不仅可以

横向比较、纵向比较,还可以从“合并”和“总计”中看出总体的比较情况。

复式条形统计图

复式条形统计图的结构比单式条形统计图更复杂,表达的信息也比单式条形统计

图更丰富,不仅便于对同一类数据进行比较,而且便于对两类相关数据进行比较。

与复式统计表相比,复式条形统计图表示的数据则更加直观、形象。

知识点:

1.统计表分为单式统计表和复式统计表。复式统计表中的内容更丰富,方便

各种数据的比较。

填写注意点:原始数据要准确,合计总计要细心,制表日期不忘记。

2.条形统计图分为单式条形统计图和复式条形统计图。复式条形统计图用不

同的直条表示不同的数量,更直观,更方便比较。图例是用不同的直条区分表

示不同的数量。

填写注意点:直条图例要统一,数据写在直条上,制图日期不忘记。

3.统计图比统计表更方便,更直观。

(七)解决问题的策略

例举法

1.例表法:

例举的特点:有顺序、不重复、不遗漏

【例1】用18根1米长的栅栏围一个长方形的羊圈,怎样围成的面积最大?

长方形的长/米

长方形的宽/米

在周长不变的前提下,当长方形的长和宽的数值相差越大,面积就越小,反之,

长方形的长和宽的数值相差越小,面积就越大。

2.例举法:

【例2】最少订1本,最多订3本,有多少种情况?

订一本:A、B、C订二本:AB、AC、BC订三本:ABC

得出结论:要按一定顺序列举,才能做到既不重复,又不遗漏。当情况比较复杂

时要先分类,再列举。列举时可以列表,也可以用文字或符号、字母等来表示。

总之要把每种可能一一列举出来,并且要用尽可能简单的方法表示,让人一看就

13

明白。

3.画图法:

【例3】小强、小华和小丽是好朋友,如果她们每两人之间通一次电话,一共要

通多少电话?如果他们互相寄一张节日贺卡,一共要寄多少张?

提问:“每两人之间通一次电话”和“两人互寄一张贺卡”有什么不同?

【例4】一个平行四边形的面积是36平方米,它的底和高分别是多少(底、高取

整米数)?请你列表看一看有几种情况。

【例5】用36个1平方厘米的小正方形拼成长方形,有多少种不同的拼法?它们

的周长各是多少?拼一拼,算出结果。

【例6】面包房的面包有4个装和6个装两种不同的包装。妈妈要购买50个面包,

一共有几种不同的选择方法?

【例7】动物园售票规定,一人券2元一张,团体券15元一张(可供10人参观),

六年级一班有58人。买门票最少要花多少元?

(八)用字母表示数

用字母表示数

1.用含有字母的式子表示数量关系和计算公式:

小结:用含有字母的式子表示数量关系和计算公式简洁、明了,让人一目了然。

字母在不同的情况下,表示数的范围不一样,有的时候可以表示任意的数,但在

表示生活中的数的时候,有时会有一定的范围。

【例1】如果用大写的C表示周长,a表示长方形的长吧,b表示长方形的宽,你

能用字母表示长方形的周长公式吗?那么面积呢?

解析:长方形的周长=(长+宽)X2,

用字母分别代进去,为C=(a+b)X2,

省略乘号为C=2(a+b)

长方形的面积=长义宽,用S表示面积,则5=2义反

【例2】若a表示单价,b表示数量,c表示总价。

(1)已知单价、数量,求总价:()

(2)已知总价、单价,求数量:()

(3)已知总价、数量,求单价:()

14

【例3】若用m表示工作效率,t表示工作时间,n表示工作总量。

(1)已知工作效率、工作时间,求工作总量:()

(2)已知工作总量、工作效率,求工作时间:()

(3)已知工作总量、工作时间,求工作效率:()

【例4】你能用字母表示以前学过的运算律吗?

加法交换律:a+b=b+a

加法结合律:a+b+c=a+(b+c)

乘法交换律:aX

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论