版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025年山东省济宁市微山县初三年级下学期第一次统练数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB绕点A沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是()A. B. C. D.2.若关于x的不等式组只有5个整数解,则a的取值范围()A. B. C. D.3.一次函数满足,且y随x的增大而减小,则此函数的图像一定不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如图,a∥b,点B在直线b上,且AB⊥BC,∠1=40°,那么∠2的度数()A.40° B.50° C.60° D.90°5.如图,在矩形ABCD中AB=,BC=1,将矩形ABCD绕顶点B旋转得到矩形A'BC'D,点A恰好落在矩形ABCD的边CD上,则AD扫过的部分(即阴影部分)面积为()A. B. C. D.6.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A.:1 B.2: C.2:1 D.29:147.在下列交通标志中,是中心对称图形的是()A. B.C. D.8.a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则()A.a<b<0 B.b<a<0 C.a<0<b D.b<0<a9.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是S甲2=A.甲 B.乙 C.甲乙同样稳定 D.无法确定10.下列图形中,是正方体表面展开图的是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为cm.12.若x=-1,则x2+2x+1=__________.13.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么sin∠BAC的值是____.14.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.其中正确的序号是(把你认为正确的都填上).15.如图,在矩形ABCD中,E、F分别是AD、CD的中点,沿着BE将△ABE折叠,点A刚好落在BF上,若AB=2,则AD=________.16.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144° B.84° C.74° D.54°17.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.三、解答题(共7小题,满分69分)18.(10分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)19.(5分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图;分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.20.(8分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(I)本次随机抽样调查的学生人数为,图①中的m的值为;(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.21.(10分)抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.求此抛物线的解析式;已知点D在第四象限的抛物线上,求点D关于直线BC对称的点D’的坐标;在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存在,请求出P点的坐标;若不存在,请说明理由.22.(10分)如图,在矩形ABCD中,E是边BC上的点,AE=BC,DF⊥AE,垂足为F,连接DE.求证:AB=DF.23.(12分)给定关于x的二次函数y=kx2﹣4kx+3(k≠0),当该二次函数与x轴只有一个公共点时,求k的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:①与y轴的交点不变;②对称轴不变;③一定经过两个定点;请判断以上结论是否正确,并说明理由.24.(14分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.求边AC的长;设边BC的垂直平分线与边AB的交点为D,求的值.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】∵四边形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,∵0°<α<45°,∴0<x<1,故选D.【点睛】本题主要考查了旋转、相似等知识,解题的关键是根据已知得出△ACG∽△ADH.2、A【解析】
分别解两个不等式得到得x<20和x>3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2a<x<20,且整数解为15、16、17、18、19,得到14≤3-2a<15,然后再解关于a的不等式组即可.【详解】解①得x<20
解②得x>3-2a,
∵不等式组只有5个整数解,
∴不等式组的解集为3-2a<x<20,
∴14≤3-2a<15,故选:A本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a<15是解此题的关键.3、C【解析】
y随x的增大而减小,可得一次函数y=kx+b单调递减,k<0,又满足kb<0,可得b>0,由此即可得出答案.【详解】∵y随x的增大而减小,∴一次函数y=kx+b单调递减,∴k<0,∵kb<0,∴b>0,∴直线经过第二、一、四象限,不经过第三象限,故选C.本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k、b是常数)的图象和性质是解题的关键.4、B【解析】分析:根据“平行线的性质、平角的定义和垂直的定义”进行分析计算即可.详解:∵AB⊥BC,∴∠ABC=90°,∵点B在直线b上,∴∠1+∠ABC+∠3=180°,∴∠3=180°-∠1-90°=50°,∵a∥b,∴∠2=∠3=50°.故选B.点睛:熟悉“平行线的性质、平角的定义和垂直的定义”是正确解答本题的关键.5、A【解析】
本题首先利用A点恰好落在边CD上,可以求出A´C=BC´=1,又因为A´B=可以得出△A´BC为等腰直角三角形,即可以得出∠ABA´、∠DBD´的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA´和面积DA´D´【详解】先连接BD,首先求得正方形ABCD的面积为,由分析可以求出∠ABA´=∠DBD´=45°,即可以求得扇形ABA´的面积为,扇形BDD´的面积为,面积ADA´=面积ABCD-面积A´BC-扇形面积ABA´=;面积DA´D´=扇形面积BDD´-面积DBA´-面积BA´D´=,阴影部分面积=面积DA´D´+面积ADA´=熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键.6、A【解析】试题分析:首先根据反比例函数y2=的解析式可得到=×3=,再由阴影部分面积为6可得到=9,从而得到图象C1的函数关系式为y=,再算出△EOF的面积,可以得到△AOC与△EOF的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF﹕AC=.故选A.考点:反比例函数系数k的几何意义7、C【解析】
解:A图形不是中心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C8、A【解析】解:∵,∴反比例函数的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数的图象上,∴a<b<0,故选A.9、A【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S甲2=1.4,S乙2=2.5,∴S甲2<S乙2,∴甲、乙两名同学成绩更稳定的是甲;故选A.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10、C【解析】
利用正方体及其表面展开图的特点解题.【详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.故选C.本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.二、填空题(共7小题,每小题3分,满分21分)11、8【解析】试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,△ACD的周长=AD+CD+AC=AB+AC,解答出即可解:∵DE是BC的垂直平分线,∴BD=CD,∴AB=AD+BD=AD+CD,∴△ACD的周长=AD+CD+AC=AB+AC=8cm;故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等12、2【解析】
先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.【详解】∵x=-1,∴x2+2x+1=(x+1)2=(-1+1)2=2,故答案为:2.本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.13、【解析】
过点B作BD⊥AC于D,设AH=BC=2x,根据等腰三角形三线合一的性质可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根据三角形的面积列方程求出BD,然后根据锐角的正弦=对边:斜边求解即可.【详解】如图,过点B作BD⊥AC于D,设AH=BC=2x,∵AB=AC,AH⊥BC,∴BH=CH=BC=x,根据勾股定理得,AC==x,S△ABC=BC•AH=AC•BD,即•2x•2x=•x•BD,解得BC=x,所以,sin∠BAC=.故答案为.14、①②④【解析】分析:∵四边形ABCD是正方形,∴AB=AD。∵△AEF是等边三角形,∴AE=AF。∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①说法正确。∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。∵∠AEF=60°,∴∠AEB=75°。∴②说法正确。如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF。∵∠CAD≠∠DAF,∴DF≠FG。∴BE+DF≠EF。∴③说法错误。∵EF=2,∴CE=CF=。设正方形的边长为a,在Rt△ADF中,,解得,∴。∴。∴④说法正确。综上所述,正确的序号是①②④。15、【解析】如图,连接EF,∵点E、点F是AD、DC的中点,∴AE=ED,CF=DF=CD=AB=1,由折叠的性质可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,,∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt△BCF中,BC=.∴AD=BC=2.点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF,证明Rt△EA′F≌Rt△EDF,得出BF的长,再利用勾股定理解答即可.16、B【解析】正五边形的内角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.17、15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线l=,∴S侧=×2πr×5=×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.三、解答题(共7小题,满分69分)18、此时轮船所在的B处与灯塔P的距离是98海里.【解析】【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.【详解】作PC⊥AB于C点,∴∠APC=30°,∠BPC=45°,AP=80(海里),在Rt△APC中,cos∠APC=,∴PC=PA•cos∠APC=40(海里),在Rt△PCB中,cos∠BPC=,∴PB==40≈98(海里),答:此时轮船所在的B处与灯塔P的距离是98海里.【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.19、(1)200人;(2)补图见解析;(3)分组后学生学习兴趣为“中”的所占的百分比为30%;对应扇形的圆心角为108°.【解析】试题分析:(1)用“极高”的人数所占的百分比,即可解答;
(2)求出“高”的人数,即可补全统计图;
(3)用“中”的人数调查的学生人数,即可得到所占的百分比,所占的百分比即可求出对应的扇形圆心角的度数.试题解析:(人).学生学习兴趣为“高”的人数为:(人).补全统计图如下:分组后学生学习兴趣为“中”的所占的百分比为:学生学习兴趣为“中”对应扇形的圆心角为:20、(I)150、14;(II)众数为3天、中位数为4天,平均数为3.5天;(III)700人【解析】
(I)根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m的值;(II)根据众数、中位数和平均数的定义计算可得;(III)用总人数乘以样本中5天、6天的百分比之和可得.【详解】解:(I)本次随机抽样调查的学生人数为18÷12%=150人,m=100﹣(12+10+18+22+24)=14,故答案为150、14;(II)众数为3天、中位数为第75、76个数据的平均数,即平均数为=4天,平均数为=3.5天;(III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500×(18%+10%)=700人.此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21、(1)(2)(0,-1)(3)(1,0)(9,0)【解析】
(1)将A(−1,0)、C(0,−3)两点坐标代入抛物线y=ax2+bx−3a中,列方程组求a、b的值即可;(2)将点D(m,−m−1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC对称的点D'的坐标;(3)分两种情形①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,②连接BD′,过点C作CP′∥BD′,交x轴于P′,分别求出直线CP和直线CP′的解析式即可解决问题.【详解】解:(1)将A(−1,0)、C(0,−3)代入抛物线y=ax2+bx−3a中,得,解得∴y=x2−2x−3;(2)将点D(m,−m−1)代入y=x2−2x−3中,得m2−2m−3=−m−1,解得m=2或−1,∵点D(m,−m−1)在第四象限,∴D(2,−3),∵直线BC解析式为y=x−3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3−2=1,∴点D关于直线BC对称的点D'(0,−1);(3)存在.满足条件的点P有两个.①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,∵直线BD解析式为y=3x−9,∵直线CP过点C,∴直线CP的解析式为y=3x−3,∴点P坐标(1,0),②连接BD′,过点C作CP′∥BD′,交x轴于P′,∴∠P′CB=∠D′BC,根据对称性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直线BD′的解析式为∵直线CP′过点C,∴直线CP′解析式为,∴P′坐标为(9,0),综上所述,满足条件的点P坐标为(1,0)或(9,0).本题考查了二次函数的综合运用.关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC的特殊性求点的坐标,学会分类讨论,不能漏解.22、详见解析.【解析】
根据矩形性质推出BC=AD=AE,AD∥BC,根据平行线性质推出∠DAE=∠AEB,根据AAS证出△ABE≌△DFA即可.【详解】证明:在矩形ABCD中∵BC=AD,AD∥BC,∠B=90°,
∴∠DAF=∠AEB,
∵DF⊥AE,AE=BC=AD,
∴∠AFD=∠B=90°,
在△ABE和△DFA中
∵
∠AFD=∠B,∠DAF=∠AEB
,AE=AD
∴△ABE≌△DFA(AAS),
∴AB=DF.本题考查的知识点有矩形的性质,全等三角形的判定与性质,平行线的性质.解决本题的关键在于能够找到证明三角形全等的有关条件.23、(1)(2)1(3)①②③【解析】
(1)由抛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年货运代理服务与货款代收合同
- 2025年度知识产权诉讼居间代理提成保证合同3篇
- 简单水粉风景画课程设计
- 2025年度电影导演聘用及电影票务分成合同3篇
- 温度控制plc课程设计
- 2024年绿色殡葬服务草皮采购合同
- 2025年度教育培训价格保密协议范本3篇
- 2024年艺人 management 合同:演员经纪与包装
- 成都艺术职业大学《数据库实验》2023-2024学年第一学期期末试卷
- 2025版市政绿化工程造价咨询合同3篇
- 园林施工技术创新-洞察分析
- 医院窗帘、隔帘采购 投标方案(技术方案)
- 2025届湖北省高三上学期12月联考语文试题
- 期末检测卷(试题)-2024-2025学年三年级上册数学人教版
- 江苏省南京市2023-2024学年高一上学期物理期末试卷(含答案)
- 2024年叉车租赁合同经典版(四篇)
- 小学科学青岛版(六三制)六年级上册全册教案(共25课)(2022秋)
- 2024焊接工艺规程
- 外研版(2024新版)七年级上册英语期末复习Unit1~6共6套学业质量检测试卷汇编(含答案)
- 药理学期末试卷
- 小学高年级课后服务 scratch3.0编程教学设计 一阶第27课 植物大战僵尸-僵尸来袭教学设计
评论
0/150
提交评论