2023-2024学年9上数学期末考点(北师大版)专题01 特殊平行四边形(考点清单20个考点)原卷版_第1页
2023-2024学年9上数学期末考点(北师大版)专题01 特殊平行四边形(考点清单20个考点)原卷版_第2页
2023-2024学年9上数学期末考点(北师大版)专题01 特殊平行四边形(考点清单20个考点)原卷版_第3页
2023-2024学年9上数学期末考点(北师大版)专题01 特殊平行四边形(考点清单20个考点)原卷版_第4页
2023-2024学年9上数学期末考点(北师大版)专题01 特殊平行四边形(考点清单20个考点)原卷版_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题01特殊平行四边形(考点清单)【考点1菱形的性质】【考点2菱形的判定】【考点3菱形的性质与判定综合运用】【考点4菱形中最小问题】【考点5矩形的性质】【考点6直角三角形斜边上的中线】【考点7矩形的判定】【考点8矩形的性质与判定综合运用】【考点9矩形形中最小值问题】【考点10梯子模型运用】【考点11矩形中折叠问题】【考点12矩形中动点问题】【考点13正方形的性质】【考点14正方形的判定】【考点15矩形的性质与判定综合运用】【考点16正方形中最小值问题】【考点17正方形-对角互模型】【考点18正方形-半角互模型】【考点19正方形-手拉手模型】【考点20正方形-十字架模型】【考点1菱形的性质】1.(2023春•延庆区期末)菱形和平行四边形都具有的性质是()A.对角线相等 B.对角线互相垂直 C.对角线平分一组对角 D.对角线互相平分2.(2023春•惠民县期末)如图,菱形ABCD中对角线相交于点O,且OE⊥AB,若AC=8,BD=6,则OE的长是()A.2.5 B.5 C.2.4 D.不确定3.(2023春•黄岩区期末)如图,四边形ABCD是菱形,对角线AC与BD相交于点O,DH⊥BC于点H.若AC=8,BD=6,则DH的长度为()A. B. C. D.4【考点2菱形的判定】4.(2023春•台江区校级期末)要检验一张四边形的纸片是否为菱形,下列方案中可行的是()A.度量四个内角是否相等 B.测量两条对角线是否相等 C.测量两条对角线的交点到四个顶点的距离是否相等 D.将这纸片分别沿两条对角线对折,看对角线两侧的部分是否每次都完全重合5.(2023春•丰台区期末)如图,下列条件之一能使▱ABCD是菱形的为()①AC=BD;②AC平分∠BAD;③AB=BC;④AC⊥BD;A.①②③ B.①②④ C.①③④ D.②③④6.(2023春•雁峰区期末)如图1,在▱ABCD中,AD>AB,∠ABC为钝角.要在对边BC,AD上分别找点M,N,使四边形ABMN为菱形.现有图2中的甲、乙两种用尺规作图确定点M,N的方案,则可得出结论()A.只有甲正确 B.只有乙正确 C.甲、乙都不正确 D.甲、乙都正确【考点3菱形的性质与判定综合运用】7.(2023春•鼓楼区校级期末)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若,BD=2,求OE的长.8.(2023春•开福区校级期末)如图,在Rt△ABC中,∠ABC=90°,AB<BC,D是AC的中点,过点D作DE⊥AC交BC于点E,延长ED至F,使DF=DE,连接AE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BE=1,EC=4,求EF的长.9.(2023春•保定期末)如图,AD是△ABC的角平分线,过点D分别作AC、AB的平行线,交AB于点E,交AC于点F.(1)求证:四边形AEDF是菱形.(2)若AF=13,AD=24.求四边形AEDF的面积.【考点4菱形中最小问题】10.(2023春•梁平区期末)如图,在菱形ABCD中,AC=8,BD=6.E是CD边上一动点,过点E分别作EF⊥OC于点F,EG⊥OD于点G,连接FG,则FG的最小值为()A.2.4 B.3 C.4.8 D.411.(2022秋•泰山区校级期末)如图,在菱形ABCD中,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH.若∠B=45°,BC=2,则GH的最小值为()A. B. C. D.12.(2023春•阳城县期末)如图,在菱形ABCD中,∠A=60°,AB=2,E,F两点分别从A,B两点同时出发,以相同的速度分别向终点B,C移动,连接EF,在移动的过程中,EF的最小值为.【考点5矩形的性质】13.(2023春•绿园区期末)矩形具有而菱形不一定具有的性质是()A.对角线互相垂直 B.对角线互相平分 C.对角线相等 D.对角线平分一组对角14.(2023春•青秀区校级期末)如图,矩形ABCD中,对角线AC、BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.3 B.4 C. D.515.(2023春•涪陵区期末)如图,矩形ABCD的对角线AC,BD相交于点O,BE⊥AC于点E,且AC=4CE,若OC=4,则矩形ABCD的面积为()A.12 B.20 C. D.【考点6直角三角形斜边上的中线】16.(2023春•怀远县期末)如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=20°,则∠BDC=()A.30° B.40° C.45° D.60°17.(2023春•南宁期末)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,点E是斜边AB的中点,且CD=1,则AB的长为()A.2 B. C.3 D.18.(2023春•南陵县期末)如图,在△ABC中,BC=26,且BD,CE分别是AC,AB上的高,F,G分别是BC,DE的中点,若ED=10,则FG的长为()A.10 B.12 C.13 D.14【考点7矩形的判定】19.(2023春•黄州区期末)下列说法中,错误的是()A.菱形的对角线互相垂直 B.对角线相等的四边形是矩形 C.平行四边形的对角线互相平分 D.对角线互相垂直平分的四边形是菱形20.(2022秋•文山市期末)如图,在四边形ABCD中,对角线AC、BD相交于点O,OA=OC,OB=OD,添加下列条件,不能判定四边形ABCD是矩形的是()A.AB=AD B.OA=OB C.AB⊥AD D.∠ABO=∠BAO21.(2023春•恩施市期末)如图,在△ABC中,点D是边BC上的点(与B、C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB、AC于E、F两点,下列说法正确的是()A.若AD平分∠BAC,则四边形AEDF是菱形 B.若BD=CD,则四边形AEDF是菱形 C.若AD垂直平分BC,则四边形AEDF是矩形 D.若AD⊥BC,则四边形AEDF是矩形【考点8矩形的性质与判定综合运用】22.(2022秋•平昌县校级期末)如图:在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于点E,延长BC至点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若BF=16,DF=8,求CD的长.23.(2023春•怀化期末)如图,四边形ABCD是平行四边形,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形.(2)若AF是∠DAB的平分线.若CF=6,BF=8,求DC的长.24.(2023春•临邑县期末)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使得CF=BE,连接DF,(1)求证:四边形AEFD是矩形;(2)连接OE,若AB=13,OE=,求AE的长.【考点9矩形形中最小值问题】25.(2023春•自贡期末)如图,在Rt△ABC中,∠BAC=90°,BA=5,AC=12,点D是斜边BC上的一个动点,过点D分别作DE⊥AB于点E,DF⊥AC于点F,点G为四边形DEAF对角线交点,则线段GF的最小值为()A. B. C. D.26.(2022秋•朝阳区校级期末)如图,在矩形ABCD中,AB=12,AD=10,点P在AD上,点Q在BC上,且AP=CQ,连结CP、QD,则PC+QD的最小值为()A.22 B.24 C.25 D.26【考点10梯子模型运用】27.(2023春•赵县期末)如图,∠MON=90°,长方形ABCD的顶点B、C分别在边OM、ON上,当B在边OM上运动时,C随之在边ON上运动,若CD=5,BC=24,运动过程中,点D到点O的最大距离为()A.24 B.25 C. D.2628.(2023春•清原县期末)如图,矩形ABCD,AB=1,BC=2,点A在x轴正半轴上,点D在y轴正半轴上.当点A在x轴上运动时,点D也随之在y轴上运动,在这个运动过程中,点C到原点O的最大距离为.【考点11矩形中折叠问题】29.(2023春•龙江县期末)如图,点E在矩形纸片ABCD的边AD上,将矩形ABCD沿BE折叠,使点A落在对角线BD上的点A′处.若∠DBC=28°,则∠A′EB的度数为()A.48° B.59° C.62° D.66°30.(2023春•乾安县期末)如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,若CD=6,则AF等于()A. B. C. D.831.(2023春•梅州期末)如图1,已知长方形纸带ABCD,AB∥CD,AD∥BC,∠C=90°,点E、F分别在边AD、BC上,∠1=20°,如图2,将纸带先沿直线EF折叠后,点C、D分别落在H、G的位置,如图3,将纸带再沿FS折叠一次,使点H落在线段EF上点M的位置,那么∠2=60°.【考点12矩形中动点问题】32.(2023春•长安区期末)如图,在长方形ABCD中,已知AB=6cm,BC=10cm,点P以2cm/s的速度由点B向点C运动,同时点Q以acm/s的速度由点C向点D运动,若某时刻以A、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,则a的值为()A.2 B.3 C.2或 D.2或33.(2023春•莲池区期末)如图,在长方形ABCD中,AB=4cm,BC=3cm,E为CD的中点动点P从A点出发,以每秒1cm的速度沿A→B→C→E运动,最终到达点E.若点P运动的时间为x秒,则当△APE的面积为5cm2时,x的值为()A.5 B.3或5 C. D.或534.(2023春•来凤县期末)如图,在四边形ABCD中,∠A=∠B=90°,AD=10cm,BC=8cm,点P从点D出发,以1cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动,设点P的运动时间为t(单位:s),下列结论:①当t=4s时,四边形ABMP为矩形;②当t=5s时,四边形CDPM为平行四边形;③当CD=PM时,t=4或5s;④当CD=PM时,t=4或6s.其中结论正确的个数有()A.1个 B.2个 C.3个 D.4个【考点13正方形的性质】35.(2023春•红旗区校级期末)菱形,矩形,正方形都具有的性质是()A.四条边相等,四个角相等 B.对角线相等 C.对角线互相垂直 D.对角线互相平分36.(2023春•馆陶县期末)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=20°,则∠AED的度数为()A.45° B.60° C.65° D.70°37.(2023春•红旗区校级期末)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B. C. D.2【考点14正方形的判定】38.(2023春•栖霞市期末)已知平行四边形ABCD中,对角线AC、BD相交于O,则下列说法准确的是()A.当OA=OC时,平行四边形ABCD为矩形 B.当AB=AD时,平行四边形ABCD为正方形 C.当∠ABC=90°时,平行四边形ABCD为菱形 D.当AC⊥BD时,平行四边形ABCD为菱形39.(2023春•黄岩区期末)如图,在△ABC中,DE∥AC,DF∥AB,下列四个判断不正确的是()A.四边形AEDF是平行四边形 B.如果∠BAC=90°,那么四边形AEDF是矩形 C.如果AD平分∠BAC,那么四边形AEDF是菱形 D.如果AD⊥BC,且AB=AC,那么四边形AEDF是正方形40.(2023春•宜都市期末)满足下列条件的四边形是正方形的是()A.对角线互相垂直且相等的平行四边形 B.对角线互相垂直的菱形 C.对角线相等的矩形 D.对角线互相垂直平分的四边形【考点15矩形的性质与判定综合运用】41.(2022春•碑林区校级期末)如图,已知四边形ABCD为正方形AB=2,点E为对角线AC上一点,连接DE,过点E作EF⊥DE,交BC延长线于点F,以DE、EF为邻边作矩形DEFG,连接CG.在下列结论中:①矩形DEFG是正方形;②2CE+CG=AD;③CG平分∠DCF;④CE=CF.其中正确的结论有()A.①③ B.②④ C.①②③ D.①②③④42.(2023春•中江县期末)如图,E、F是正方形ABCD的对角线BD上的两点,且DF=BE.(1)求证:四边形AECF是菱形;(2)若,BF=4,求四边形AECF的周长.43.(2023春•番禺区校级期中)如图,在△ABC中,点D、E、F分别在BC、AB、AC边上,且DE∥AC,DF∥AB.(1)如果∠BAC=90°那么四边形AEDF是形;(2)如果AD是△ABC的角平分线,那么四边形AEDF是形;(3)如果∠BAC=90°,AD是△ABC的角平分线,那么四边形AEDF是形,证明你的结论(仅需证明第3)题结论)44.(2023春•来凤县期末)如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.【考点16正方形中最小值问题】45.(2023•池州开学)如图,在边长为2的正方形ABCD中,点E,F分别是边BC,CD上的动点,且BE=CF,连接BF,DE,则BF+DE的最小值为()A. B. C. D.46.(2023春•邗江区校级期末)如图,在正方形ABCD中,点E、F、G分别在AB、AD、CD上,AB=3,AE=1,DG>AE,BF=EG,BF与EG交于点P.连接DP,则DP的最小值为()A. B. C. D.47.(2023春•江油市期末)如图,在正方形ABCD中,点M在BD上运动,过点M分别作ME⊥AB,MF⊥AD,垂足分别为点E,F,若BC=4,则EF的最小值为()A. B.2 C. D.【考点17正方形-对角互模型】48.(2023秋•莲湖区期中)定义:若一个四边形满足三个条件①有一组对角互补,②一组邻边相等,③相等邻边的夹角为直角,则称这样的四边形为“直角等邻对补”四边形,简称为“直等补”四边形.根据以上定义,解答下列问题.(1)如图1,四边形ABCD是正方形,点E在CD边上,点F在CB边的延长线上,且DE=BF,连接AE,AF,请根据定义判断四边形AFCE是否是“直等补”四边形,并说明理由.(2)如图2,已知四边形ABCD是“直等补”四边形,AB=AD,AE⊥BC于点E,若AB=20,CD=4,求BC的长.49.(2023春•栖霞市期末)如图,已知四边形ABCD是正方形,对角线AC、BD相交于O,设E、F分别是AD、AB上的点,若∠EOF=90°,DO=4,求四边形AEOF的面积.50.(2023秋•峄城区校级月考)如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,OA1交AB于点E,OC1交BC于点F.(1)求证:△AOE≌△BOF;(2)如果两个正方形的边长都为4,求四

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论