版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东珠海市香洲区重点达标名校2021-2022学年中考数学押题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=,则△ACE的面积为()A.1 B. C.2 D.22.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内 B.点P在⊙O外 C.点P在⊙O上 D.无法判断3.如图,已知垂直于的平分线于点,交于点,,若的面积为1,则的面积是()A. B. C. D.4.估计的值在()A.4和5之间 B.5和6之间C.6和7之间 D.7和8之间5.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤6.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣27.如图,▱ABCD对角线AC与BD交于点O,且AD=3,AB=5,在AB延长线上取一点E,使BE=AB,连接OE交BC于F,则BF的长为()A. B. C. D.18.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是()A.AB两地相距1000千米B.两车出发后3小时相遇C.动车的速度为D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地9.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)10.下列运算正确的是(
)A.a2·a3﹦a6
B.a3+a3﹦a6
C.|-a2|﹦a2
D.(-a2)3﹦a611.2017年牡丹区政府工作报告指出:2012年以来牡丹区经济社会发展取得显著成就,综合实力明显提升,地区生产总值由156.3亿元增加到338亿元,年均可比增长11.4%,338亿用科学记数法表示为()A.3.38×107 B.33.8×109 C.0.338×109 D.3.38×101012.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542每天加工零件数的中位数和众数为()A.6,5 B.6,6 C.5,5 D.5,6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___岁.14.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若AOC=80°,则ADB的度数为()A.40°B.50°C.60°D.20°15.已知边长为2的正六边形ABCDEF在平面直角坐标系中的位置如图所示,点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2018次翻转之后,点B的坐标是______.16.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D,若OA=2,则阴影部分的面积为.17.函数y=中自变量x的取值范围是___________.18.如果方程x2-4x+3=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tanA的值为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,,,.求证:.20.(6分)已知关于x的一元二次方程.求证:方程有两个不相等的实数根;如果方程的两实根为,,且,求m的值.21.(6分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:求被调查的学生人数;补全条形统计图;已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?22.(8分)已知:正方形绕点顺时针旋转至正方形,连接.如图,求证:;如图,延长交于,延长交于,在不添加任何辅助线的情况下,请直接写出如图中的四个角,使写出的每一个角的大小都等于旋转角.23.(8分)先化简,再求值:(1﹣)÷,其中x是不等式组的整数解24.(10分)如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点.已知点C的坐标是(6,-1),D(n,3).求m的值和点D的坐标.求的值.根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?25.(10分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若DE=3,sin∠BDE=,求AC的长.26.(12分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.27.(12分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元.今年的总收入和总支出计划各是多少万元?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】
由折叠的性质可得CD=CF=,DE=EF,AC=,由三角形面积公式可求EF的长,即可求△ACE的面积.【详解】解:∵点F是AC的中点,∴AF=CF=AC,∵将△CDE沿CE折叠到△CFE,∴CD=CF=,DE=EF,∴AC=,在Rt△ACD中,AD==1.∵S△ADC=S△AEC+S△CDE,∴×AD×CD=×AC×EF+×CD×DE∴1×=EF+DE,∴DE=EF=1,∴S△AEC=××1=.故选B.【点睛】本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键.2、B【解析】
比较OP与半径的大小即可判断.【详解】,,,点P在外,故选B.【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种设的半径为r,点P到圆心的距离,则有:点P在圆外;点P在圆上;点P在圆内.3、B【解析】
先证明△ABD≌△EBD,从而可得AD=DE,然后先求得△AEC的面积,继而可得到△CDE的面积.【详解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面积为1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故选B.【点睛】本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.4、C【解析】
根据,可以估算出位于哪两个整数之间,从而可以解答本题.【详解】解:∵即
故选:C.【点睛】本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.5、A【解析】
由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>2.【详解】①∵对称轴在y轴右侧,∴a、b异号,∴ab<2,故正确;②∵对称轴∴2a+b=2;故正确;③∵2a+b=2,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于2.故错误.故选A.【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>2时,抛物线向上开口;当a<2时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>2),对称轴在y轴左;当a与b异号时(即ab<2),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(2,c).6、D【解析】试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x的取值应满足:x≠﹣1.故选D.考点:分式有意义的条件.7、A【解析】
首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:△EFB∽△EOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值.【详解】取AB的中点M,连接OM,∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=AD=×3=,∴△EFB∽△EOM,∴,∵AB=5,BE=AB,∴BE=2,BM=,∴EM=+2=,∴,∴BF=,故选A.【点睛】此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.8、C【解析】
可以用物理的思维来解决这道题.【详解】未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+V2)=1000,所以C选项错误;D选项正确.【点睛】理解转折点的含义是解决这一类题的关键.9、B【解析】分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案.详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,又∵A的坐标是(1,1),结合中点坐标公式可得P1的坐标是(1,0);同理P1的坐标是(1,﹣1),记P1(a1,b1),其中a1=1,b1=﹣1.根据对称关系,依次可以求得:P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(4×1+a1,b1),∵1010=4×501+1,∴点P1010的坐标是(1010,﹣1),故选:B.点睛:本题考查了对称的性质,坐标与图形的变化---旋转,根据条件求出前边几个点的坐标,得到规律是解题关键.10、C【解析】
根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【详解】a2·a3﹦a5,故A项错误;a3+a3﹦2a3,故B项错误;a3+a3﹦-a6,故D项错误,选C.【点睛】本题考查同底数幂加减乘除及乘方,解题的关键是清楚运算法则.11、D【解析】
根据科学记数法的定义可得到答案.【详解】338亿=33800000000=,故选D.【点睛】把一个大于10或者小于1的数表示为的形式,其中1≤|a|<10,这种记数法叫做科学记数法.12、A【解析】
根据众数、中位数的定义分别进行解答即可.【详解】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选A.【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1.【解析】
根据中位数的定义找出第20和21个数的平均数,即可得出答案.【详解】解:∵该班有40名同学,∴这个班同学年龄的中位数是第20和21个数的平均数.∵14岁的有1人,1岁的有21人,∴这个班同学年龄的中位数是1岁.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.14、B.【解析】试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.考点:圆的基本性质、切线的性质.15、(4033,)【解析】
根据正六边形的特点,每6次翻转为一个循环组循环,用2018除以6,根据商和余数的情况确定出点B的位置,经过第2017次翻转之后,点B的位置不变,仍在x轴上,由A(﹣2,0),可得AB=2,即可求得点B离原点的距离为4032,所以经过2017次翻转之后,点B的坐标是(4032,0),经过2018次翻转之后,点B在B′位置(如图所示),则△BB′C为等边三角形,可求得BN=NC=1,B′N=,由此即可求得经过2018次翻转之后点B的坐标.然后求出翻转前进的距离,过点C作CG⊥x于G,求出∠CBG=60°,然后求出CG、BG,再求出OG,然后写出点C的坐标即可.【详解】设2018次翻转之后,在B′点位置,∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组,∵2018÷6=336余2,∴经过2016次翻转为第336个循环,点B在初始状态时的位置,而第2017次翻转之后,点B的位置不变,仍在x轴上,∵A(﹣2,0),∴AB=2,∴点B离原点的距离=2×2016=4032,∴经过2017次翻转之后,点B的坐标是(4032,0),经过2018次翻转之后,点B在B′位置,则△BB′C为等边三角形,此时BN=NC=1,B′N=,故经过2018次翻转之后,点B的坐标是:(4033,).故答案为(4033,).【点睛】本题考查的是正多边形和圆,涉及到坐标与图形变化-旋转,正六边形的性质,确定出最后点B所在的位置是解题的关键.16、.【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===.17、x≥﹣且x≠1【解析】
试题解析:根据题意得:解得:x≥﹣且x≠1.故答案为:x≥﹣且x≠1.18、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,①当3是直角边时,∵△ABC最小的角为A,∴tanA=;②当3是斜边时,根据勾股定理,∠A的邻边=,∴tanA=;所以tanA的值为或.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、见解析【解析】
先通过∠BAD=∠CAE得出∠BAC=∠DAE,从而证明△ABC≌△ADE,得到BC=DE.【详解】证明:∵∠BAD=∠CAE,
∴∠BAD+∠DAC=∠CAE+∠DAC.
即∠BAC=∠DAE,
在△ABC和△ADE中,,
∴△ABC≌△ADE(SAS).
∴BC=DE.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL.20、(1)证明见解析(1)1或1【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(1)根据根与系数的关系可以得到关于m的方程,从而可以求得m的值.试题解析:(1)证明:∵,∴△=[﹣(m﹣3)]1﹣4×1×(﹣m)=m1﹣1m+9=(m﹣1)1+8>0,∴方程有两个不相等的实数根;(1)∵,方程的两实根为,,且,∴,,∴,∴(m﹣3)1﹣3×(﹣m)=7,解得,m1=1,m1=1,即m的值是1或1.21、(4)60;(4)作图见试题解析;(4)4.【解析】试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;(4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;(4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.试题解析:(4)被调查的学生人数为:44÷40%=60(人);(4)喜欢艺体类的学生数为:60-44-44-46=8(人),如图所示:全校最喜爱文学类图书的学生约有:4400×=4(人).考点:4.条形统计图;4.用样本估计总体;4.扇形统计图.22、(1)证明见解析;(2).【解析】
(1)连接AF、AC,易证∠EAC=∠DAF,再证明ΔEAC≅ΔDAF,根据全等三角形的性质即可得CE=DF;(2)由旋转的性质可得∠DAG、∠BAE都是旋转角,在四边形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,由此即可解答.【详解】(1)证明:连接,∵正方形旋转至正方形∴,∴∴在和中,,∴∴(2).∠DAG、∠BAE、∠FMC、∠CNF;由旋转的性质可得∠DAG、∠BAE都是旋转角,在四边形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,【点睛】本题考查了正方形的性质、旋转的性质及全等三角形的判定与性质,证明ΔEAC≅ΔDAF是解决问题的关键.23、x=3时,原式=【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,求出不等式组的解集,找出解集中的整数计算得出到x的值,代入计算即可求出值.【详解】解:原式=÷=×=,解不等式组得,2<x<,∵x取整数,∴x=3,当x=3时,原式=.【点睛】本题主要考查分式额化简求值及一元一次不等式组的整数解.24、(1)m=-6,点D的坐标为(-2,3);(2);(3)当或时,一次函数的值大于反比例函数的值.【解析】
(1)将点C的坐标(6,-1)代入即可求出m,再把D(n,3)代入反比例函数解析式求出n即可.(2)根据C(6,-1)、D(-2,3)得出直线CD的解析式,再求出直线CD与x轴和y轴的交点即可,得出OA、OB的长,再根据锐角三角函数的定义即可求得;(3)根据函数的图象和交点坐标即可求得.【详解】⑴把C(6,-1)代入,得.则反比例函数的解析式为,把代入,得,∴点D的坐标为(-2,3).⑵将C(6,-1)、D(-2,3)代入,得,解得.∴一次函数的解析式为,∴点B的坐标为(0,2),点A的坐标为(4,0).∴,在在中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论