高二数学立体几何知识点-立体图形公式-立体几何学习方法_第1页
高二数学立体几何知识点-立体图形公式-立体几何学习方法_第2页
高二数学立体几何知识点-立体图形公式-立体几何学习方法_第3页
高二数学立体几何知识点-立体图形公式-立体几何学习方法_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高二数学立体几何知识点_立体图形公式_立体几何学习方法立体几何方是高中数学的重要知识点,那么你知道立体几何知识点和立体图形公式有哪些吗今天,店铺为大家整理了立体几何知识点和立体图形公式,欢迎阅读。高二数学立体几何知识点1.位置关系:(1)两条异面直线相互垂直证明方法:①证明两条异面直线所成角为90o;②证明线面垂直,得到线线垂直;③证明两条异面直线的方向量相互垂直。(2)直线和平面相互平行证明方法:①证明直线和这个平面内的一条直线相互平行;②证明这条直线的方向量和这个平面内的一个向量相互平行;③证明这条直线的方向量和这个平面的法向量相互垂直。(3)直线和平面垂直证明方法:①证明直线和平面内两条相交直线都垂直,②证明直线的方向量与这个平面内不共线的两个向量都垂直;③证明直线的方向量与这个平面的法向量相互平行,高考。(4)平面和平面相互垂直证明方法:①证明这两个平面所成二面角的平面角为90o;②证明一个平面内的一条直线垂直于另外一个平面;③证明两个平面的法向量相互垂直。2.求距离:求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。(1)两条异面直线的距离求法:利用公式法。(2)点到平面的距离求法:①“一找二证三求”,三步都必须要清楚地写出来。②等体积法。③向量法。3.求角(1)两条异面直线所成的角求法:①先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;②通过两条异面直线的方向量所成的角来求得,但是注意到异面直线所成角得范围是,向量所成的角范围是,如果求出的是钝角,要注意转化成相应的锐角。(2)直线和平面所成的角求法:①“一找二证三求”,三步都必须要清楚地写出来。②向量法,先求直线的方向量于平面的法向量所成的角α,那么所要求的角为或。(3)平面与平面所成的角求法:①“一找二证三求”,找出这个二面角的平面角,然后再来证明我们找出来的这个角是我们要求的二面角的平面角,最后就通过解三角形来求。②向量法,先求两个平面的法向量所成的角为α,那么这两个平面所成的二面角的平面角为α或π-α。立体图形公式立方图形名称符号面积S和体积V1、正方体a-边长S=6a2;V=a32、长方体a-长;b-宽;c-高;S=2(ab+ac+bc);V=abc3、棱柱S-底面积;h-高;V=Sh4、棱锥S-底面积h-高;V=Sh/35、棱台S1和S2-上、下底面积h-高;V=h[S1+S2+(S1S1)1/2]/36、拟柱体S1-上底面积;S2-下底面积;S0-中截面积;h-高V=h(S1+S2+4S0)/67、圆柱r-底半径;h-高;C—底面周长;S底—底面积;S侧—侧面积S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h=πr2h8、空心圆柱R-外圆半径;r-内圆半径;h-高V=πh(R2-r2)9、直圆锥r-底半径;h-高V=πr2h/310、圆台r-上底半径R-下底半径h-高V=πh(R2+Rr+r2)/311、球r-半径;d-直径V=4/3πr3=πd2/612、球缺h-球缺高;r-球半径;a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3a2=h(2r-h)13、球台r1和r2-球台上、下底半径;h-高V=πh[3(r12+r22)+h2]/614、圆环体R-环体半径;D-环体直径;r-环体截面半径;d-环体截面直径V=2π2Rr2=π2Dd2/415、桶状体D-桶腹直径;d-桶底直径;h-桶高V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)高中数学立体几何的学习方法一逐渐提高逻辑论证能力立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,高一,然后用综合法(“推出法”)形式写出二立足课本,夯实基础直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处:(1)深刻掌握定理的内容,明确定理的作用是什么,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论