版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年山东省垦利区达标名校中考数学全真模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是()A. B. C. D.2.中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是()A. B. C. D.3.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,,则四边形EFCD的周长为A.14 B.13 C.12 D.104.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.
B.
C.
D.5.在平面直角坐标系中,点(-1,-2)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知一个多边形的内角和是外角和的2倍,则此多边形的边数为()A.6 B.7 C.8 D.97.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是(
)A.1 B.2 C.3 D.48.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是()A.2B.3C.4D.59.如图,点A,B在反比例函数y=1x(x>0)的图象上,点C,D在反比例函数y=A.4 B.3 C.2 D.310.如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过的图形面积为()A. B. C.6π D.以上答案都不对二、填空题(共7小题,每小题3分,满分21分)11.方程的解是_____.12.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图①整幅七巧板是由正方形ABCD分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图②是由七巧板拼成的一个梯形,若正方形ABCD的边长为12cm,则梯形MNGH的周长是cm(结果保留根号).13.在△ABC中,MN∥BC分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.14.用换元法解方程,设y=,那么原方程化为关于y的整式方程是_____.15.对于函数,若x>2,则y______3(填“>”或“<”).16.现有一张圆心角为108°,半径为40cm的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为_____.17.分解因式:__________.三、解答题(共7小题,满分69分)18.(10分)某水果店购进甲乙两种水果,销售过程中发现甲种水果比乙种水果销售量大,店主决定将乙种水果降价1元促销,降价后30元可购买乙种水果的斤数是原来购买乙种水果斤数的1.5倍.(1)求降价后乙种水果的售价是多少元/斤?(2)根据销售情况,水果店用不多于900元的资金再次购进两种水果共500斤,甲种水果进价为2元/斤,乙种水果进价为1.5元/斤,问至少购进乙种水果多少斤?19.(5分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对冬奥会了解程度的统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n=;(2)扇形统计图中,D部分扇形所对应的圆心角是;(3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.20.(8分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?21.(10分)计算:4cos30°+|3﹣|﹣()﹣1+(π﹣2018)022.(10分)解不等式组并写出它的整数解.23.(12分)如图1,抛物线l1:y=﹣x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣5).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.24.(14分)如图,已知反比例函数y=k1x与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).求k1,k2,b的值;求△AOB的面积;若M(x1,y1),N(x2,y2)是反比例函数y=k1x的图象上的两点,且x1<x2,y
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
本题的等量关系是:绳长-木长=4.5;木长-×绳长=1,据此列方程组即可求解.【详解】设绳子长x尺,木条长y尺,依题意有.故选A.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.2、C【解析】
根据中心对称图形的概念进行分析.【详解】A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、是中心对称图形,故此选项正确;
D、不是中心对称图形,故此选项错误;
故选:C.【点睛】考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、C【解析】
∵平行四边形ABCD,∴AD∥BC,AD=BC,AO=CO,∴∠EAO=∠FCO,∵在△AEO和△CFO中,,∴△AEO≌△CFO,∴AE=CF,EO=FO=1.5,∵C四边形ABCD=18,∴CD+AD=9,∴C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C.【点睛】本题关键在于利用三角形全等,解题关键是将四边形CDEF的周长进行转化.4、A【解析】
连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【详解】解:连接AM,
∵AB=AC,点M为BC中点,
∴AM⊥CM(三线合一),BM=CM,
∵AB=AC=5,BC=6,
∴BM=CM=3,
在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,
又S△AMC=MN•AC=AM•MC,∴MN==.
故选A.【点睛】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.5、C【解析】:∵点的横纵坐标均为负数,∴点(-1,-2)所在的象限是第三象限,故选C6、A【解析】试题分析:根据多边形的外角和是310°,即可求得多边形的内角的度数为720°,依据多边形的内角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.故选A.考点:多边形的内角和定理以及多边形的外角和定理7、C【解析】∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正确,故选C.点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.8、A【解析】试题分析:已知AB是⊙O的弦,半径OC⊥AB于点D,由垂径定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A.考点:垂径定理;勾股定理.9、B【解析】
首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD//y轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为32【详解】把x=1代入y=1∴A(1,1),把x=2代入y=1x得:y=∴B(2,12∵AC//BD//y轴,∴C(1,K),D(2,k2∴AC=k-1,BD=k2-1∴S△OAC=12S△ABD=12(k2-又∵△OAC与△ABD的面积之和为32∴12(k-1)×1+12(k2-1故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.10、D【解析】
从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.【详解】阴影面积=π.
故选D.【点睛】本题的关键是理解出,线段AB扫过的图形面积为一个环形.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】,,x=1,代入最简公分母,x=1是方程的解.12、24+24【解析】
仔细观察梯形从而发现其各边与原正方形各边之间的关系,则不难求得梯形的周长.【详解】解:观察图形得MH=GN=AD=12,HG=AC,AD=DC=12,AC=12,HG=6.梯形MNGH的周长=HG+HM+MN+NG=2HM+4HG=24+24.故答案为24+24.【点睛】此题主要考查学生对等腰梯形的性质及正方形的性质的运用及观察分析图形的能力.13、1【解析】
∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案为1.14、6y2-5y+2=0【解析】
根据y=,将方程变形即可.【详解】根据题意得:3y+,得到6y2-5y+2=0故答案为6y2-5y+2=0【点睛】此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键.15、<【解析】
根据反比例函数的性质即可解答.【详解】当x=2时,,∵k=6时,∴y随x的增大而减小∴x>2时,y<3故答案为:<【点睛】此题主要考查了反比例函数的性质,解题的关键在于利用反比例函数图象上点的坐标特点判断函数值的取值范围.16、18°【解析】试题分析:根据圆锥的展开图的圆心角计算法则可得:扇形的圆心角=1040考点:圆锥的展开图17、3(m-1)2【解析】试题分析:根据因式分解的方法,先提公因式,再根据完全平方公式分解因式即可,即3m2-6m+3=3(m2-2m+1)=3(m-1)2.故答案为:3(m-1)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).三、解答题(共7小题,满分69分)18、(1)降价后乙种水果的售价是2元/斤;(2)至少购进乙种水果200斤.【解析】
(1)设降价后乙种水果的售价是x元,30元可购买乙种水果的斤数是,原来购买乙种水果斤数是,根据题意即可列出等式;(2)设至少购进乙种水果y斤,甲种水果(500﹣y)斤,有甲乙的单价,总斤数≤900即可列出不等式,求解即可.【详解】解:(1)设降价后乙种水果的售价是x元,根据题意可得:,解得:x=2,经检验x=2是原方程的解,答:降价后乙种水果的售价是2元/斤;(2)设至少购进乙种水果y斤,根据题意可得:2(500﹣y)+1.5y≤900,解得:y≥200,答:至少购进乙种水果200斤.【点睛】本题考查了分式的应用和一元一次不等式的应用,根据题意列出式子是解题的关键19、(1)40;(2)144°;(3)作图见解析;(4)游戏规则不公平.【解析】
(1)根据统计图可以求出这次调查的n的值;
(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;
(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;
(4)根据题意可以写出树状图,从而可以解答本题.【详解】解:(1)n%=1﹣10%﹣15%﹣35%=40%,故答案为40;(2)扇形统计图中D部分扇形所对应的圆心角是:360°×40%=144°,故答案为144°;(3)调查的结果为D等级的人数为:400×40%=160,故补全的条形统计图如右图所示,(4)由题意可得,树状图如右图所示,P(奇数)P(偶数)故游戏规则不公平.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20、(1)w=200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元.【解析】
(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用=A运往C的运费+A运往D的运费+B运往C的运费+B运往D的运费,列出函数关系式;(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.【详解】解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6﹣x吨,A粮仓运往C市粮食10﹣x吨,A粮仓运往D市粮食12﹣(10﹣x)=x+2吨,总运费w=300x+500(6﹣x)+400(10﹣x)+800(x+2)=200x+8600(0≤x≤6).(2)200x+8600≤9000解得x≤2共有3种调运方案方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)w=200x+8600k>0,所以当x=0时,总运费最低.也就是从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;最低运费是8600元.【点睛】本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.21、1【解析】
直接利用特殊角的三角函数值和负指数幂的性质、零指数幂的性质、二次根式的性质分别化简得出答案.【详解】原式=1×+2﹣3﹣2+1=2+2﹣1=1﹣1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22、不等式组的解集是5<x≤1,整数解是6,1【解析】
先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案.【详解】∵解①得:x>5,解不等式②得:x≤1,∴不等式组的解集是5<x≤1,∴不等式组的整数解是6,1.【点睛】本题考查求一元一次不等式组,解题的关键是掌握求一元一次不等式组的方法23、(1)抛物线l2的函数表达式;y=x2﹣4x﹣1;(2)P点坐标为(1,1);(3)在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1.【解析】
(1)由抛物线l1的对称轴求出b的值,即可得出抛物线l1的解析式,从而得出点A、点B的坐标,由点B、点E、点D的坐标求出抛物线l2的解析式即可;(2)作CH⊥PG交直线PG于点H,设点P的坐标为(1,y),求出点C的坐标,进而得出CH=1,PH=|3﹣y|,PG=|y|,AG=2,由PA=PC可得PA2=PC2,由勾股定理分别将PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)设出点M的坐标,求出两个抛物线交点的横坐标分别为﹣1,4,①当﹣1<x≤4时,点M位于点N的下方,表示出MN的长度为关于x的二次函数,在x的范围内求二次函数的最值;②当4<x≤1时,点M位于点N的上方,同理求出此时MN的最大值,取二者较大值,即可得出MN的最大值.【详解】(1)∵抛物线l1:y=﹣x2+bx+3对称轴为x=1,∴x=﹣=1,b=2,∴抛物线l1的函数表达式为:y=﹣x2+2x+3,当y=0时,﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),设抛物线l2的函数表达式;y=a(x﹣1)(x+1),把D(0,﹣1)代入得:﹣1a=﹣1,a=1,∴抛物线l2的函数表达式;y=x2﹣4x﹣1;(2)作CH⊥P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋建筑工程保修合同协议书范本(2024版)6篇
- 科学计算语言Julia及MWORKS实践 课件 20-极坐标图
- 进修学习护理总结出科
- 2024年幼儿园保育主任年度考核个人总结范文
- 2024月底工作总结
- 胆道感染的护理查房
- 翻译三级笔译实务模拟57
- 讲解眼科手术
- 人音版音乐七年级上册《在希望的田野上》课件
- 玉林师范学院《课程与教学论》2022-2023学年第一学期期末试卷
- 体育游戏PPT课件
- 篮球球性练习教案
- 幼儿园小班课件:《迪迪医生》
- (项目管理)高速公路PPP项目运营方案
- EMC电磁兼容测试报告2
- 郦波 一生不可错过的唯美诗词
- 城市生活垃圾处理收费工作总结
- 家庭教育指导菜单及家长作业
- 车库人防工程预埋安装施工方案范本
- 监控系统投标书(含施工方案)范本
- 浅谈鲁迅《野草》的象征主义--毕业论文
评论
0/150
提交评论