圆的综合应用题(学生版)-2024年中考数学答题技巧_第1页
圆的综合应用题(学生版)-2024年中考数学答题技巧_第2页
圆的综合应用题(学生版)-2024年中考数学答题技巧_第3页
圆的综合应用题(学生版)-2024年中考数学答题技巧_第4页
圆的综合应用题(学生版)-2024年中考数学答题技巧_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

通的候舍启用题

与圆的性质有关的证明与计算

特殊四边形与圆结合的动态探究

圆的综合应用题中常考题型

情景与应用题型

中考圆的命题趋势主要围绕圆的有关概念和性质进行考查,包括弦弧角的关系、圆周角与圆心角、圆内接

四边形、切线等知识点。这些知识点常以选择题、填空题和解答题的形式出现,既考察学生对这些基础知识的

掌握程度,也考察学生运用这些知识解决实际问题的能力。

模型01与圆的性质有关的证明与计算

与圆的性质有关的证明与计算近两年主要以选择、填空的形式出现。在选择题和填空题中,通常会直接

考查学生对圆心角与圆周角及圆的切线等知识的理解和应用。在解答题中,可能会涉及到圆的对称性、圆与

三角形或四边形的综合应用,需要学生运用所学的数学知识进行推理和计算。止匕外,还可能会涉及到与其他

知识点的综合应用,如与三角形的相似和全等、四边形的存在性问题等知识点的结合。

模型02特殊四边形与圆结合的动态探究

特殊四边形与圆结合的动态研究,该题型主要以解答题的形式出现,第一问基本上考查的为圆的性质,主

要以求解和证明的形式出现。圆与四边形结合时,需要我们对四边形的判定和性质有清晰认识,尤其是菱形、

矩形的相关知识点。圆的综合问题是中考数学中的压轴题中的一类,也是难度较大的一类,所以,对应的训练

很有必要。

模型03情景与应用题型

情景与应用题型是圆知识点的综合考查应用,通常和我们的日常生活中所接触的事物或者生活现象紧密

结合,需要同学们有较强的阅读和理解题意的能力,同时还要有一定的知识储备。在解题时要根据题意把转

化为我们所学习的圆的相关知识应用。

总结・通型铀建[

模型01与圆的性质有关的证明与计算

考I向I项I恻

与圆的性质有关的证明与计算该题型近年主要以选择、填空形式出现,在综合性大题考试中,难度系数不

大,在各类考试中都以中档题为主。解这类问题的关键是结合圆的性质及相关判定定理与推论并结合圆

和其它几何的相关知识点进行解题。

答I题I技I巧

第一步:灵活应用弦弧角之间的关系,弦和弧最终转化为角,一般情况下是圆周角;

第二步:碰到直径想直角,直径所对的圆周角为90°;

第三步:看到切线--连半径--90°,证明切线时注意证明90°;

第四步:圆内接四边形一一对角互补,外交等于内对角;

[题型王<5'1

题目工(2023•河南)如图,在中,/B=30°,AB=3.以。为圆心,04为半径的圆。交OB于点C.

点。在OO上,连接CD,4D,若/40。=30°,则圆。的半径为()

A.1B.V3C.2D.V5

题目团(2023•安徽)如图,在△48。中,/4=90°,4B=AC=9,以点A为圆心、6为半径的圆上有一个动

点P.连接AP、BP、CP,则|■JBF+CP的最小值是()

B

A.3V13B.V97C.D.2+3V13

题目区(2023・湖北)如图,AB是。O的直径,48=10,。是AB延长线上一点,。在。。上,连接AC,

BC,DC,4BCD=/A.

⑴求证:OC是。。的切线;

(2)若tan/_A=■,求CD的长.

2

模型02特殊四边形与圆结合的动态探究

考|向|霸|浏

糊味四边形与圆结合的动态探究模型该题型主要以解答题的形式出现,综合性较强,有一定难度,主要考查

对圆性质的理解与三角形或四边形综合知识的应用。实际题型中对数形结合的讨论是解题的关键。许多问

题的讨论中需要我们对四边形的判定和性质有清晰认识。

答I题I技I巧

第一步:圆的性质应用,根据专题1的解题思路进行求解;

第二步:注意结合的四边形的形状,特殊平行四边形的性质与判定熟练应用;

第三步:四边形的存在性问题注意假设、反推;

第四步:数形结合进行分析、解答

|题型而校I

[题目@(2023•湖北)如图,四边形ABCD内接于0O,点E在CD的延长线上.若乙4DE=70°,

题目回(2023•江西)课本改编

(1)如图1,四边形ABCD为③。的内接四边形,力。为。。的直径,则48=/。=_度,ABAD+ABCD

=_度.

(2)如果O。的内接四边形ABCD的对角线AC不是。O的直径,如图2,求证:圆内接四边形的对角互

补.

知识运用

(3)如图3,等腰三角形ABC的腰是。。的直径,底边和另一条腰分别与。。交于点D,E,F是线

段CE的中点,连接DF,求证:DF是60的切线.

3

模型03情景与应用题型

考|向|霸|浏

圆结合的情景与应用模型近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易得满分。

该题型主要以解答题的形式出现,一般较为靠后,有一定难度。该题型通常和我们的日常生活中所接触的事

物或者生活现象紧密结合,需要同学们有较强的阅读和理解题意的能力,同时还要有一定的知识储备。在解

题时要根据题意把转化为我们所学习的圆的相关知识应用。

答I题I技I巧

第一步:理解题意,联系圆的相关知识点;

第二步:圆的相关证明与判定依据模型1的思路总结;

第三步:利用四边形、圆、直角三角形或相似的相关知识点解题;

题型手柄

愚目①(2022.河南)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚

铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环。。与水平地

面相切于点C,推杆AB与铅垂线AD的夹角为乙BAD,点。,A,B,在同一平面内.当推杆AB与

铁环。。相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.

(1)求证:ABOC+ABAD=90°.

(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低

位置,此时点A距地面的距离AD最小,测得cosABAD=色.已知铁环0O的半径为25cm,推杆AB的

长为75cm,求此时AD的长.

题目②(2022.江苏)(现有若干张相同的半圆形纸片,点。是圆心,直径AB的长是12cm,。是半圆弧上的

一点(点。与点不重合),连接

AOBAOB

备用图

(1)沿AC,剪下ZVIBC,贝IZVLB。是三角形(填“锐角”、“直角”或“钝角”);

(2)分别取半圆弧上的点E、F和直径上的点G、H.已知剪下的由这四个点顺次连接构成的四边形是

一个边长为6cm的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作

法);

(3)经过数次探索,小明猜想,对于半圆弧上的任意一点C,一定存在线段AC上的点“、线段上的点N

和直径AB上的点P、Q,使得由这四个点顺次连接构成的四边形是一个边长为4cm的菱形.小明的猜想

是否正确?请说明理由.

京嶷•强牝训线

题目回(2022.四川省)如图,CD为。O的直径,弦48,CD,垂足为石,CE=1,48=6,则。O的半径为

A.3B.4C.5D.无法确定

题目@(2023•广东)如图,AD为。。的直径,AD=6cm,则47的长度为()

A.V2B.2V2C.3V2D.373

题目回(2023・福建)。。的半径为10cm,弦AB〃CD.若AB=12cm,CD=16cm,则AB和CD的距离为

()

A.2cmB.14cmC.2cm或14cmD.2cm或10cm

题目后〕(2023•北京)如图,AB为。。的直径,点。在圆上,若/40。=130°,则/氏4。的度数为()

B.30°C.40°D.50°

题目⑦(2023•浙江)如图,在AABC中,AB=AC,以AB为直径作圆,交BC于点。,延长CA交圆于点E,

连接DE,交于点F.若AF:BF=1:4,则EF:DF的值为()

E

A

A.3:5B.2:3C.3:4D.1:2

痼目J](2023-陕西)如图,。。是AABC的外接圆,/A=72°.过点。作及7的垂线交数于点。,连接

BD,则/。的度数为()

A.64°B.54°C.46°D.36°

题目。(2023•上海)若一个正多边形的每一个外角都等于36°,那么这个正多边形的中

心角为度.

题目兀(2022•上海)如图,。。是的外接圆,AB交。。于点E,垂足

为点。,/出,CB的延长线交于点F.如果OD=3,AB=8,那么FC的长是.

题目兀(2023•长宁)如图,。。的直径AB与弦CD交于点E,已知/CEA=45°,DE=7,。£?=32,那

么cot^ABD的值为

题目叵(2023・湖南)如图,四边形ABCD内接于。O,对角线ACBD交于点E,连接OE.若

0。的半径为八0七=m.

6

(1)若4ABe=/BAD,求证:OE平分AAEB-,

⑵试用含r,馆的式子表示AC2+BE>2的值;

⑶记AADE,/\BCE,/\ABE,/\CDE的面积分别为&,S?,S3,S”当JS1+S2+S3+S4=佝+JE时,

求证:AC=BD.

题目口口(2022.浙江)如图1所示的圆弧形混凝上管片是构成圆形隧道的重要部件.管片的横截面(阴影部

分)如图2所示,是同心圆环的一部分,左右两边沿的延长线交于圆心,甲、乙、丙三个小组分别采用三种不

同的方法,测算三片不同大小的混凝土管片的外圆弧半径.

图1图2图3图4

(1)如图2,BA,CD的延长线交于圆心O,若甲组测得AB=0.6m,4D=3小,BC=4小,求08的长.

(2)如图3,ED,FC的延长线交于圆心若乙组测得DE=0.8M,历=12m,颉=15m,直接写出EH

的长.

(3)如图4,有一混凝土管片放置在水平地面上,底部用两个完全相同的长方体木块固定,管片与地面的接

触点心为血的中点,若丙组测得MN=PQ=0.5m,NL=LQ=2m,求该管片的外圆弧半径.

题目工(2024.陕西西安.一模)如图,点力,B在以CD为直径的半圆上,B是歪的中点,连结BD,AC交于

点E,若/ECD=40°,则/BDC的度数是()

A.45°B.40°C.30°D.25°

题目团(2024・安徽池州・一模)如图,已知A4BC内接于©O,AC为直径,半径ODII连接OB,AD.

若乙403=140°,则乙BAD的度数为()

A.75°B.70°C.55°D.50°

§(2024.安徽.一模)如图,四边形48cD内接于。O,AC为。。的直径,乙4CD+=180°,连

接。。,过点。作DELAC,垂足为点E,过点。作。。的切线交BC的延长线于点F,则下列结论中不正

确的是()

A.AD=DBB.NCDF=NBAC

C.DF±BFD.若。。的半径为5,CD=4,则CF=§

5

题目⑷在①中,/C=90°,点O是斜边AB边上一点,以。为圆心,OA为半径作圆,。。恰好与边

BC相切于点。,连接AD,若AD=BD,。。的半径为4,则CD的长度为()

题目可如图,OO半径长2cm,点4B、。是。。三等分点,。为圆上一点,连接且4D=2V^cm,

CD交AB于点E,则ABED()

A.75°B.651C.60°D.55°

题目回(2023•浙江金华三模)如图,已知直线y=—3与c轴、"轴分别交于4B两点,P是以。(0,1)

为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是()

题目⑦(2024.河南漠河.一模)如图圆。的半径是4,BC是弦,/B=30°且力是弧BC的中点,则弦AB的

A.2V3B.4V3C.4D.6

【题目回(2024.重庆.一模)如图,是。。的直径且=42,点。在圆上且AABC=60°,AACB的平分

线交。。于点。,连接AD并过点A作垂足为E,则弦AD的长度为()

D

A.2V3B.V15C.4D.亮碗

题目⑥如图,。O半径长2cm,点A、B、C是。。三等分点,点。为圆上一点,连接AD,且AD=2v^cm,

CD交AB于点、E,则/BED=()

A.75°B.65°C.60°D.55°

题目主]如图,有圆。,内部有四边形ABC。,连接CO和AO,己知/B=60°,8是乙4CD的角平分线,

则/AOC的度数是()

C.75°D.45°

题目3D如图,AB是。。的直径,C。与。。相切于点C,AB的延长线交直线CD于点E,连接AC,BC.

若AACD=60°,47=血,则BE的长度是.

题目应(2023•宁波)如图,在Rt/XABC中,/C=90°,E为AB边上一点,以AE为直径的半圆O与BC相

切于点。,连结AD,BE=3,=3V5.P是AB边上的动点,当AADP为等腰三角形时,AP的长为

题目应如图,AB是。的直径,AC是弦,且QD,AC于点E,QD交。。于点F,连接CF、BF,若

4BFC=/ODA.

⑴求证:AD是。。的切线:

(2)若AB=10,AC=8,求人。的长.

题目正如图,四边形ABCD是。。的内接四边形,AB是直径,C是反)的中点,过点。作CELAD交

AD的延长线于点E.

(1)求证:CE是。。的切

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论