人教版初中数学同步讲义八年级下册第10讲 专题5 正方形中的三大模型(原卷版)_第1页
人教版初中数学同步讲义八年级下册第10讲 专题5 正方形中的三大模型(原卷版)_第2页
人教版初中数学同步讲义八年级下册第10讲 专题5 正方形中的三大模型(原卷版)_第3页
人教版初中数学同步讲义八年级下册第10讲 专题5 正方形中的三大模型(原卷版)_第4页
人教版初中数学同步讲义八年级下册第10讲 专题5 正方形中的三大模型(原卷版)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第10讲专题5正方形中的三大模型类型一:正方形中的十字架模型类型二:正方形中的半角(45°)模型类型三:正方形中手拉手模型类型一:正方形中的十字架模型1.如图,在正方形ABCD中,点E是DC边的中点,AE的垂直平分线分别交AD,BC边于点F,G,垂足为点H.若AB=4,则GH的长为.第1题第2题2.如图,在正方形ABCD中,点E,F分别在AD,AB上,满足DE=AF,连接CE,DF,点P,Q分别是DF,CE的中点,连接PQ.若∠ADF=α.则∠PQE可以用α表示为()A.α B.45°﹣α C. D.3α﹣45°3.如图,在正方形ABCD中,E、F分别是AB、BC的中点,CE交DF于点G,连接AG.下列结论:①CE=DF;②CE⊥DF;③∠EAG=30°;④∠AGE=∠CDF.其中正确的是()A.①② B.①③ C.①②④ D.①②③4.如图,在边长为1的正方形ABCD中,点E,F分别是边AD,CD上的动点,且AE=DF,连接BE、AF,交于点G.(1)连接DG,则线段DG的最小值是;(2)取CG的中点H,连接DH,则线段DH的最小值是.5.如图,P为正方形ABCD内一点,过P作直线PD交BC于点E,过P作直线GH交AB、DC于G、H,且GH=DE.若∠APD=∠DEC,∠EDC=15°.以下结论:①△ABP为等边三角形;②PG=PD③S△PBE=PD2④BP=PE+PG其中正确的有()A.1个 B.2个 C.3个 D.4个6.如图1,在正方形ABCD中,E,F分别是AD,CD上两点,BE交AF于点G,且DE=CF.(1)写出BE与AF之间的关系,并证明你的结论;(2)如图2,若AB=2,点E为AD的中点,连接GD,试证明GD是∠EGF的角平分线,并求出GD的长.类型二:正方形中的半角(45°)模型7.如图,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,已知AD=6(正方形的四条边都相等,四个内角都是直角),DF=2,则S△AEF=()A.6 B.12 C.15 D.308.如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于()A.2α B.90°﹣2α C.45°﹣α D.90°﹣α9.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF.若DF=3,则BE的长为()A.2 B.3 C.4 D.510.已知正方形ABCD边长为5,点M、N分别在边BC,CD上,连接AM,MN,AN,若∠MAN=45°,BM=2,则线段NC的长为()A.2 B.3 C. D.11.在正方形ABCD中,E、F分别在边BC、CD上,∠EAF=45°,若△ABE、△AEF、△ADF、△EFC的面积分别记为:S1、S2、S3、S4,则等式一定成立的是()A.S1=S3 B.S1+S3=S2 C.S1+S3+S4=S2 D.S3=S412.如图,在正方形ABCD中,AB=2,且∠EAF=45°.则以下结论:①AF平分∠EFD;②BE+DF=EF;③△ECF的周长为4;④△AEF的面积等于正方形ABCD的面积的一半.其中正确的个数是()A.0个 B.1个 C.2个 D.3个13.(1)我们知道,正方形的四条边都相等,四个角都为直角.如图1,在正方形ABCD中,点E,F分别在边BC,CD上,连接AE,AF,EF,并延长CB到点G,使BG=DF,连接AG.若∠EAF=45°,猜想BE,EF,DF之间的数量关系并证明;(2)如图2,当点E在线段BC的延长线上,且∠EAF=45°时,试探究BE,EF,DF之间的数量关系,并说明理由.14.(1)如图1,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,试判断BE、DF与EF三条线段之间的数量关系,直接写出判断结果:.(2)如图2:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.点E、F分别是BC、CD上的点,且∠EAF=60°,探究图中线段BE、EF、FD之间的数量关系.请说明理由(提示:延长FD到点C,使DG=BE,连结AG.)类型三:正方形中的手拉手模型(多选)15.如图,点E为正方形ABCD对角线AC上一点,连接DE,过点E作EF⊥DE,交BC延长线于点F,以DE,EF为邻边作矩形DEFG,连接CG.下列结论正确的有()A.DE=EF B.CE=CF C.AC⊥CG D.BC=CG16.如图,正方形ABCD的边长为9,E为对角线AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE,EF为邻边作矩形DEFG,连接CG,下列结论中不正确的是()A.矩形DEFG是正方形 B.∠CEF=∠ADE C.CG平分∠DCH D.17.如图,正方形ABCO和正方形DEFO的顶点A,O,E在同一直线l上,且EF=,AB=3,给出下列结论:①∠COD=45°;②AE=6;③CF=BD=;④△COF的面积是.其中正确的结论为()A.①③ B.①④ C.②③ D.①③④18.如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.19.如图1,已知正方形ABCD和正方形AEFG有公共顶点A,连接BE,DG.(1)请判断BE与DG的数量关系与位置关系,并证明你的结论.(2)如图2,已知AB=4,,当点F在边AD上时,求BE的长.20.已知,如图1,正方形ABCD和正方形BEFG,三点A、B、E在同一直线上,连接AG和CE,(1)判

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论