高中立体几何基础知识点全集_第1页
高中立体几何基础知识点全集_第2页
高中立体几何基础知识点全集_第3页
高中立体几何基础知识点全集_第4页
高中立体几何基础知识点全集_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE4立体几何知识点整理姓名:直线和平面的三种位置关系:1.线面平行符号表示:2.线面相交符号表示:3.线在面内符号表示:平行关系:线线平行:方法一:用线面平行实现。方法二:用面面平行实现。方法三:用线面垂直实现。若,则。方法四:用向量方法:若向量和向量共线且l、m不重合,则。线面平行:方法一:用线线平行实现。方法二:用面面平行实现。方法三:用平面法向量实现。若为平面的一个法向量,且,则。面面平行:方法一:用线线平行实现。方法二:用线面平行实现。三.垂直关系:1.线面垂直:方法一:用线线垂直实现。方法二:用面面垂直实现。2.面面垂直:方法一:用线面垂直实现。方法二:计算所成二面角为直角。线线垂直:方法一:用线面垂直实现。方法二:三垂线定理及其逆定理。方法三:用向量方法:若向量和向量的数量积为0,则。夹角问题。异面直线所成的角:(1)范围:(2)求法:方法一:定义法。步骤1:平移,使它们相交,找到夹角。步骤2:解三角形求出角。(常用到余弦定理)余弦定理:(计算结果可能是其补角)方法二:向量法。转化为向量的夹角(计算结果可能是其补角):线面角(1)定义:直线l上任取一点P(交点除外),作PO于O,连结AO,则AO为斜线PA在面内的射影,(图中)为直线l与面所成的角。(2)范围:当时,或当时,(3)求法:方法一:定义法。步骤1:作出线面角,并证明。步骤2:解三角形,求出线面角。方法二:向量法(为平面的一个法向量)。二面角及其平面角(1)定义:在棱l上取一点P,两个半平面内分别作l的垂线(射线)m、n,则射线m和n的夹角为二面角—l—的平面角。(2)范围:(3)求法:方法一:定义法。步骤1:作出二面角的平面角(三垂线定理),并证明。步骤2:解三角形,求出二面角的平面角。方法二:截面法。步骤1:如图,若平面POA同时垂直于平面,则交线(射线)AP和AO的夹角就是二面角。步骤2:解三角形,求出二面角。方法三:坐标法(计算结果可能与二面角互补)。步骤一:计算步骤二:判断与的关系,可能相等或者互补。距离问题。1.点面距。方法一:几何法。步骤1:过点P作PO于O,线段PO即为所求。步骤2:计算线段PO的长度。(直接解三角形;等体积法和等面积法;换点法)方法二:坐标法。2.线面距、面面距均可转化为点面距。3.异面直线之间的距离方法一:转化为线面距离。如图,m和n为两条异面直线,且,则异面直线m和n之间的距离可转化为直线m与平面之间的距离。方法二:直接计算公垂线段的长度。方法三:公式法。如图,AD是异面直线m和n的公垂线段,,则异面直线m和n之间的距离为:常见几何体的特征及运算长方体1.长方体的对角线相等且互相平分。2.若长方体的一条对角线与相邻的三条棱所成的角分别为,则若长方体的一条对角线与相邻的三个面所成的角分别为,则3.若长方体的长宽高分别为a、b、c,则体对角线长为,表面积为,体积为。正棱锥:底面是正多边形且顶点在底面的射影在底面中心。正棱柱:底面是正多边形的直棱柱。正多面体:每个面有相同边数的正多边形,且每个顶点为端点有相同棱数的凸多面体。(只有五种正多面体)棱锥的性质:平行于底面的的截面与底面相似,且面积比等于顶点到截面的距离与棱锥的高的平方比。正棱锥的性质:各侧棱相等,各侧面都是全等的等腰三角形。体积:球1.定义:到定点的距离等于定长的点的集合叫球面。2.设球半径为R,小圆的半径为r,小圆圆心为O1,球心O到小圆的距离为d,则它们三者之间的数量关系是。3.球面距离:经过球面上两点的大圆在这两点间的一段劣弧的长度。4.球的表面积公式:体积公式:立体几何知识点一.基本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。公理3:过不在同一条直线上的三个点,有且只有一个平面。推论1:经过一条直线和这条直线外一点,有且只有一个平面。推论2:经过两条相交直线,有且只有一个平面。推论3:经过两条平行直线,有且只有一个平面。公理4:平行于同一条直线的两条直线互相平行。等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。3.异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。两异面直线所成的角:范围为(0°,90°]两异面直线间距离:公垂线段(有且只有一条)2、直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。(规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°])3.最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角4.三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。(在平面内的直线只要垂直于斜线就垂直于射影;垂直于射影就垂直于斜线)5.直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。7.两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,则交线平行。8.(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°](2)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。(3)直二面角:平面角是直角的二面角叫做直二面角。9.两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥.两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。10.二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)11.棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。棱柱的性质:(1)侧棱都相等,侧面是平行四边形(2)两个底面与平行于底面的截面是全等的多边形(3)过不相邻的两条侧棱的截面是平行四边形12.棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥棱锥的性质:(1)侧棱交于一点。侧面都是三角形(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方13.正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。正棱锥的性质:(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等(3)a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。b四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心注意建立空间直角坐标系,空间向量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论