2022届上海市浦东新区南片联合体达标名校中考数学模拟试题含解析_第1页
2022届上海市浦东新区南片联合体达标名校中考数学模拟试题含解析_第2页
2022届上海市浦东新区南片联合体达标名校中考数学模拟试题含解析_第3页
2022届上海市浦东新区南片联合体达标名校中考数学模拟试题含解析_第4页
2022届上海市浦东新区南片联合体达标名校中考数学模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022届上海市浦东新区南片联合体达标名校中考数学模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是()A.(a2)4=a6 B.a2•a3=a6 C. D.2.如图,⊙O的半径OC与弦AB交于点D,连结OA,AC,CB,BO,则下列条件中,无法判断四边形OACB为菱形的是()A.∠DAC=∠DBC=30° B.OA∥BC,OB∥AC C.AB与OC互相垂直 D.AB与OC互相平分3.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.20cm2 B.20πcm2 C.10πcm2 D.5πcm24.已知抛物线y=(x﹣)(x﹣)(a为正整数)与x轴交于Ma、Na两点,以MaNa表示这两点间的距离,则M1N1+M2N2+…+M2018N2018的值是()A. B. C. D.5.已知,下列说法中,不正确的是()A. B.与方向相同C. D.6.在0.3,﹣3,0,﹣这四个数中,最大的是()A.0.3 B.﹣3 C.0 D.﹣7.6的绝对值是()A.6 B.﹣6 C. D.8.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是()A. B. C. D.9.下列二次根式中,与是同类二次根式的是()A. B. C. D.10.如果,那么的值为()A.1 B.2 C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.袋中装有红、绿各一个小球,随机摸出1个小球后放回,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率是_____.12.已知:如图,矩形ABCD中,AB=5,BC=3,E为AD上一点,把矩形ABCD沿BE折叠,若点A恰好落在CD上点F处,则AE的长为_____.13.已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.14.如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若AB=2,反比例函数y=(k≠0)的图象恰好经过A′,B,则k的值为_____.15.因式分解:.16.已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为_____.三、解答题(共8题,共72分)17.(8分)如图,在Rt△ABC中,,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.求证:CE=AD;当D在AB中点时,四边形BECD是什么特殊四边形?说明理由;若D为AB中点,则当=______时,四边形BECD是正方形.18.(8分)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.19.(8分)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E.F.试判断直线BC与⊙O的位置关系,并说明理由;若BD=23,BF=2,求⊙O的半径.20.(8分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为xm设垂直于墙的一边长为ym,直接写出y与x之间的函数关系式;若菜园面积为384m2,求x的值;求菜园的最大面积.21.(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若AB=4,tan∠ADB=,求折叠后重叠部分的面积.22.(10分)如图,在平面直角坐标系中,直线经过点和,双曲线经过点B.(1)求直线和双曲线的函数表达式;(2)点C从点A出发,沿过点A与y轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0<t<12),连接BC,作BD⊥BC交x轴于点D,连接CD,①当点C在双曲线上时,求t的值;②在0<t<6范围内,∠BCD的大小如果发生变化,求tan∠BCD的变化范围;如果不发生变化,求tan∠BCD的值;③当时,请直接写出t的值.23.(12分)(1)解不等式组:;(2)解方程:.24.计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣2|

参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】

根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.【详解】A、原式=a8,所以A选项错误;B、原式=a5,所以B选项错误;C、原式=,所以C选项正确;D、与不能合并,所以D选项错误.故选:C.【点睛】本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.2、C【解析】(1)∵∠DAC=∠DBC=30°,∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△AOC和△OBC都是等边三角形,∴OA=AC=OC=BC=OB,∴四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;(2)∵OA∥BC,OB∥AC,∴四边形OACB是平行四边形,又∵OA=OB,∴四边形OACB是菱形,即B选项中的条件可以判定四边形OACB是菱形;(3)由OC和AB互相垂直不能证明到四边形OACB是菱形,即C选项中的条件不能判定四边形OACB是菱形;(4)∵AB与OC互相平分,∴四边形OACB是平行四边形,又∵OA=OB,∴四边形OACB是菱形,即由D选项中的条件能够判定四边形OACB是菱形.故选C.3、C【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.故答案为C4、C【解析】

代入y=0求出x的值,进而可得出MaNa=-,将其代入M1N1+M2N2+…+M2018N2018中即可求出结论.【详解】解:当y=0时,有(x-)(x-)=0,解得:x1=,x2=,∴MaNa=-,∴M1N1+M2N2+…+M2018N2018=1-+-+…+-=1-=.故选C.【点睛】本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出MaNa的值是解题的关键.5、A【解析】

根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【详解】A、,故该选项说法错误B、因为,所以与的方向相同,故该选项说法正确,C、因为,所以,故该选项说法正确,D、因为,所以;故该选项说法正确,故选:A.【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.6、A【解析】

根据正数大于0,0大于负数,正数大于负数,比较即可【详解】∵-3<-<0<0.3∴最大为0.3故选A.【点睛】本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.7、A【解析】试题分析:1是正数,绝对值是它本身1.故选A.考点:绝对值.8、B【解析】分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可.详解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是.故选B.点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.9、C【解析】

根据二次根式的性质把各个二次根式化简,根据同类二次根式的定义判断即可.【详解】A.|a|与不是同类二次根式;B.与不是同类二次根式;C.2与是同类二次根式;D.与不是同类二次根式.故选C.【点睛】本题考查了同类二次根式的定义,一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.10、D【解析】

先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案.【详解】故选:D.【点睛】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】解:列表如下:所有等可能的情况有4种,所以第一次摸到红球,第二次摸到绿球的概率=.故答案为.12、【解析】

根据矩形的性质得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根据折叠得到BF=AB=5,EF=EA,根据勾股定理求出CF,由此得到DF的长,再根据勾股定理即可求出AE.【详解】∵矩形ABCD中,AB=5,BC=3,∴CD=AB=5,AD=BC=3,∠D=∠C=90°,由折叠的性质可知,BF=AB=5,EF=EA,在Rt△BCF中,CF==4,∴DF=DC﹣CF=1,设AE=x,则EF=x,DE=3﹣x,在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,解得,x=,故答案为:.【点睛】此题考查矩形的性质,勾股定理,折叠的性质,由折叠得到BF的长度是解题的关键.13、1.1【解析】试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==1cm,∵点D为AB的中点,∴OD=AB=2.1cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.故答案为1.1.14、【解析】

解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=故答案为15、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.16、3:4【解析】由于相似三角形的相似比等于对应中线的比,∴△ABC与△DEF对应中线的比为3:4故答案为3:4.三、解答题(共8题,共72分)17、(1)详见解析;(2)菱形;(3)当∠A=45°,四边形BECD是正方形.【解析】

(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【详解】(1)∵DE⊥BC,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB,∴DE//AC,∵MN//AB,∴四边形ADEC为平行四边形,∴CE=AD;(2)菱形,理由如下:在直角三角形ABC中,∵D为AB中点,∴BD=AD,∵CE=AD,∴BD=CE,∴MN//AB,∴BECD是平行四边形,∵∠ACB=90°,D是AB中点,∴BD=CD,(斜边中线等于斜边一半)∴四边形BECD是菱形;(3)若D为AB中点,则当∠A=45°时,四边形BECD是正方形,理由:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,∵四边形BECD是菱形,∴DC=DB,∴∠DBC=∠DCB=45°,∴∠CDB=90°,∵四边形BECD是菱形,∴四边形BECD是正方形,故答案为45°.【点睛】本题考查了平行四边形的判定与性质,菱形的判定、正方形的判定,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.18、(1)m≤1;(2)3≤m≤1.【解析】试题分析:(1)根据判别式的意义得到△=(-6)2-1(2m+1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围.试题解析:(1)根据题意得△=(-6)2-1(2m+1)≥0,解得m≤1;(2)根据题意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20,解得m≥3,而m≤1,所以m的范围为3≤m≤1.19、(1)相切,理由见解析;(1)1.【解析】

(1)求出OD//AC,得到OD⊥BC,根据切线的判定得出即可;(1)根据勾股定理得出方程,求出方程的解即可.【详解】(1)直线BC与⊙O的位置关系是相切,理由是:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD为半径,∴直线BC与⊙O的位置关系是相切;(1)设⊙O的半径为R,则OD=OF=R,在Rt△BDO中,由勾股定理得:OB2=BD2+OD2,即(R+1)2=(13)2+R2,解得:R=1,即⊙O的半径是1.【点睛】此题考查切线的判定,勾股定理,解题关键在于求出OD⊥BC.20、(1)见详解;(2)x=18;(3)416m2.【解析】

(1)根据“垂直于墙的长度=可得函数解析式;(2)根据矩形的面积公式列方程求解可得;(3)根据矩形的面积公式列出总面积关于x的函数解析式,配方成顶点式后利用二次函数的性质求解可得.【详解】(1)根据题意知,y==-x+;(2)根据题意,得(-x+)x=384,解得x=18或x=32.∵墙的长度为24m,∴x=18.(3)设菜园的面积是S,则S=(-x+)x=-x2+x=-(x-25)2+.∵-<0,∴当x<25时,S随x的增大而增大.∵x≤24,∴当x=24时,S取得最大值,最大值为416.答:菜园的最大面积为416m2.【点睛】本题主要考查二次函数和一元二次方程的应用,解题的关键是将实际问题转化为一元二次方程和二次函数的问题.21、(1)见解析;(2)1【解析】

(1)由矩形的性质可知∠A=∠C=90°,由翻折的性质可知∠A=∠F=90°,从而得到∠F=∠C,依据AAS证明△DCE≌△BFE即可;(2)由△DCE≌△BFE可知:EB=DE,依据AB=4,tan∠ADB=,即可得到DC,BC的长,然后再Rt△EDC中利用勾股定理列方程,可求得BE的长,从而可求得重叠部分的面积.【详解】解:(1)∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,由折叠可得,∠F=∠A,BF=AB,∴BF=DC,∠F=∠C=90°,又∵∠BEF=∠DEC,∴△DCE≌△BFE;(2)∵AB=4,tan∠ADB=,∴AD=8=BC,CD=4,∵△DCE≌△BFE,∴BE=DE,设BE=DE=x,则CE=8﹣x,在Rt△CDE中,CE2+CD2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴BE=5,∴S△BDE=BE×CD=×5×4=1.【点睛】本题考查了折叠的性质、全等三角形的判定和性质以及勾股定理的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.22、(1)直线的表达式为,双曲线的表达式为;(2)①;②当时,的大小不发生变化,的值为;③t的值为或.【解析】

(1)由点利用待定系数法可求出直线的表达式;再由直线的表达式求出点B的坐标,然后利用待定系数法即可求出双曲线的表达式;(2)①先求出点C的横坐标,再将其代入双曲线的表达式求出点C的纵坐标,从而即可得出t的值;②如图1(见解析),设直线AB交y轴于M,则,取CD的中点K,连接AK、BK.利用直角三角形的性质证明A、D、B、C四点共圆,再根据圆周角定理可得,从而得出,即可解决问题;③如图2(见解析),过点B作于M,先求出点D与点M重合的临界位置时t的值,据此分和两种情况讨论:根据三点坐标求出的长,再利用三角形相似的判定定理与性质求出DM的长,最后在中,利用勾股定理即可得出答案.【详解】(1)∵直线经过点和∴将点代入得解得故直线的表达式为将点代入直线的表达式得解得∵双曲线经过点,解得故双曲线的表达式为;(2)①轴,点A的坐标为∴点C的横坐标为12将其代入双曲线的表达式得∴C的纵坐标为,即由题意得,解得故当点C在双曲线上时,t的值为;②当时,的大小不发生变化,求解过程如下:若点D与点A重合由题意知,点C坐标为由两点距离公式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论